
Towards Biomimetic Virtual Constraint Control
of a Powered Prosthetic Leg

Robert D. Gregg, Member, IEEE, and Jonathon W. Sensinger, Member, IEEE

Abstract—This brief presents a novel control strategy for
a powered prosthetic ankle based on a biomimetic virtual
constraint. We first derive a kinematic constraint for the
“effective shape” of the human ankle-foot complex during
locomotion. This shape characterizes ankle motion as a function
of the Center of Pressure (COP)–the point on the foot sole where
the resultant ground reaction force is imparted. Since the COP
moves monotonically from heel to toe during steady walking, we
adopt the COP as a mechanical representation of the gait cycle
phase in an autonomous feedback controller. We show that our
kinematic constraint can be enforced as a virtual constraint by an
output linearizing controller that uses only feedback available to
sensors onboard a prosthetic leg. Using simulations of a passive
walking model with feet, we show that this novel controller
exactly enforces the desired effective shape whereas a standard
impedance (i.e., proportional-derivative) controller cannot. This
work provides a single, biomimetic control law for the entire
single-support period during robot-assisted locomotion.

I. INTRODUCTION

Estimates indicate that by 2050 the United States will incur
a two-fold increase in the incidence of limb loss, due in
large part to vascular disease [1]. High-performance prostheses
could significantly improve the quality of life for lower-limb
amputees, whose ambulation is slower, less stable, and requires
more energy than that of able-bodied persons [2], [3].

Modern prosthetic legs have mechanically passive joints
that attempt to mimic human joint impedance (i.e., stiffness
and viscosity) [4], [5]. This approach fails to replicate
the ability of human muscles to generate large amounts
of mechanical power, which is why transfemoral amputees
expend excessive amounts of energy climbing inclines and
stairs. The recent advent of mechanically powered legs (e.g.,
[6]–[10]) presents new opportunities, as well as challenges, for
prosthetic control systems. The Vanderbilt legs [7], [8] extend
the traditional impedance control paradigm by changing
proportional-derivative (PD) gains according to discretized
phases of the gait cycle. The iWalk ankle [9] also uses a finite
state machine but trades the simplicity of impedance models
for the biomimetic behavior of muscle reflex models. These
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increasingly complex prostheses are limited by the need to
manually tune multiple control models for each user and task,
and their time-varying strategies are not necessarily robust to
external perturbations that push joint kinematics (i.e., angles
and velocities) forward or backward in the gait cycle.

These limitations could potentially be addressed by a
unifying control model based on a mechanical representation
of the gait cycle phase (i.e., the location in an oscillation),
which could be continuously sensed by a prosthesis to match
the body’s progression through the cycle. The prosthetic ankle
SPARKy [10] is the first prosthetic control system to employ
phase-based control by tracking able-bodied human data (e.g.,
ankle angles from level ground walking) as a function of
the shank angle and velocity. However, without defining a
general constraint function this control strategy does not
readily generalize to arbitrary users or tasks.

Feedback controllers for autonomous walking robots have
been developed that produce joint torques to “virtually”
enforce kinematic constraints [11]–[16], which define desired
joint patterns as functions of a mechanical phase variable (e.g.,
the stance leg angle or hip position). This approach has proven
successful in experimental bipedal robots such as RABBIT
[14] and MABEL [15]. In particular, using feedback control
to linearize the output dynamics associated with the constraints
enables more accurate tracking and faster walking than is
possible with PD control [15]. A biomimetic virtual constraint
and phase variable could make prosthetic legs more robust and
easily tuned than with current prosthetic control approaches.

Recent evidence suggests that the progression of human
joint patterns during locomotion is coupled with the heel-
to-toe movement of the center of pressure (COP)–the point
on the foot sole where the resultant ground reaction force
is imparted. Hansen et al. have shown that during human
walking, geometric relationships exist between stance leg
joints and the COP [17]–[20]. Viewed from a shank-based
reference frame, the ankle and foot together produce a COP
trajectory resembling a circular rocker shape (coined “effective
shape”), which is invariant over walking speeds, heel heights,
and body weights. The fact that the COP moves monotonically
from heel to toe during steady gait [21] suggests that the
COP can serve as the phase variable of a virtual constraint.
However, without the availability of state feedback from the
human body, it is unclear how a prosthetic control system can
linearize its output dynamics to enforce a virtual constraint.

The practical contributions of this paper are two-fold: (i)
we propose the COP as a phase variable and show that the
effective shape between the COP and ankle joint corresponds
to a simple kinematic constraint, which (ii) can be enforced
as a virtual constraint by an output linearizing controller using
feedback available to sensors onboard a prosthetic leg. The
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Fig. 1. Left: biped model with the prosthesis shown in solid gray and the
body shown in dashed black. The COP is defined at the origin, where the
orientation of the global reference frame is defined with respect to horizontal
(dashed) axis x̂. The origin of the shank-based coordinate frame (solid axes
x̂s, ŷs) is drawn above the ankle for visual clarity but is actually modeled
to coincide with the ankle joint (which is located at the heel for simplicity).
Right: diagram of human ankle-foot effective shape with a radius of curvature
Rs, which is constant for walking tasks. The COP moves along the shape
(dashed curve) about the center of rotation Ps in the shank-based coordinate
frame. Note that in this diagram the relative angle θank between the shank
xs-axis and foot (dotted axis) is shown instead of the global leg angle θs.

theoretical contribution is then the derivation of an output
linearizing control law for a dynamical system subject to
external forces and holonomic constraints. This controller
drives ankle patterns as a function of the COP, a novel choice
of phase variable that unifies the single-support cycle in a
prosthetic control system. We simulate a biped model to show
that stable gaits can be achieved for a range of effective
shapes enforced by output linearization, whereas an impedance
controller cannot exactly enforce these shapes.

II. LEG MODEL

In this paper we use a simple model without knees to design
an ankle controller and to simulate walking. The human ankle
merely lifts the foot to facilitate ground clearance during the
swing period, so in this paper we focus on the control of
a prosthetic ankle bearing weight during stance. The planar
biped of Fig. 1 (left) has a hip joint and ankle joints with
constant-curvature rocker feet to approximate the deformation
of human feet during walking [22]. We consider the stance leg
(shown in solid gray) to be a prosthesis, which connects to the
body (dashed black) at the hip. We will separately model the
stance leg for the control derivation in Section III and return
to the full biped model for simulations in Section IV.

We model the prosthesis by first describing the continuous
dynamics of its kinematic chain with respect to the COP.
We then derive a kinematic constraint that forces the COP
to move along the rocker foot in the continuous dynamics.
Note that this constraint is different than the effective shape,
which depends on both the foot curvature and ankle motion.
We will model and control the effective shape in Section III.

A. Dynamics

The configuration of the stance leg is given by q =
(x, y, θs)

T , where x, y are the Cartesian coordinates of the
ankle/heel center (for simplicity the ankle is defined at the
heel) with respect to the COP (defined at the origin), and θs

is the leg angle defined with respect to vertical. The state
of the dynamical system is given by vector z = (qT , q̇T )T ,
where q̇ contains the joint velocities. During the continuous
single-support period, the state trajectory evolves according to
a differential equation of the form

M(q)q̈ + C(q, q̇)q̇ +N(q) +AT (q)λ = τ (1)

where M is the inertia/mass matrix, C is the matrix of
Coriolis/centrifugal terms, N is the vector of gravitational
torques, A is the constraint vector for the rocker foot
(modeling inherent foot compliance), and λ is the Lagrange
multiplier providing the forces to enforce the foot constraint.
The vector of external forces τ = Bu+ JT (q)F is composed
of actuator torques and interaction forces with the body,
respectively. Ankle actuation is provided by scalar torque
input u and mapped into the leg’s coordinate system by
B = [0, 0, 1]T . We now describe force F and Jacobian J .

B. Interaction Forces

The interaction force F ∈ R3 at the socket (i.e., the
connection between the prosthesis and the body) is composed
of linear forces in the plane and the moment about the normal
axis. This force vector at the end-point of the kinematic chain
is mapped to torques and forces at the leg joints by the
Jacobian matrix (cf. [23])

J(q) =

 cos(θs) sin(θs) −`
− sin(θs) cos(θs) 0

0 0 1

 , (2)

where ` is the leg length. Note that force F can be measured
by a 3-axis load cell attached to the socket (located at the hip
in our model). We now show how to model the rocker foot
constraint in the context of equation (1).

C. Modeling the Foot

We model the rocker foot by constraining the heel point
(x, y) to an arc that has radius Rf and intersects the COP,
which we have defined at the origin. The center of rotation Pf

is defined in a moving reference frame such that the vector
between Pf and the COP is always normal to the ground with
radius ||Pf − COP || = Rf . This constraint is given in model
coordinates by k(q) = 0, where

k(q) = (x−Rf sin(ρ))2 + (y +Rf cos(ρ))2 −R2
f

for ρ = γ + 2 arcsin( d
2Rf

), slope angle γ, and distance
d =

√
x2 + y2 between the COP and the heel. Following

the method in [23], we derive the constraint vector A = ∇qk
and Lagrange multiplier λ = λ̂+ λ̃u+ λ̄F , where

λ̂ = (AM−1AT )−1(Ȧq̇ −AM−1(Cq̇ +N))

λ̃ = (AM−1AT )−1AM−1B

λ̄ = (AM−1AT )−1AM−1JT . (3)



Recall that this rocking constraint only pertains to the
foot, whereas the effective shape characterizes the pendular
trajectory of the stance leg about the ankle-foot complex. We
now use this leg model to derive a kinematic constraint and
controller that mimics the human effective shape.

III. EFFECTIVE SHAPE CONTROL

We wish to design a prosthetic control system that mimics
the effective shape of the biological ankle-foot complex during
various locomotor tasks [20]. This shape characterizes how
the ankle moves as the COP travels from heel to toe. We now
derive the kinematic constraint of the effective shape and two
possible controllers for enforcing a desired shape.

A. Kinematic Constraint
The effective shape is the COP trajectory mapped into a

shank-based reference frame (axes x̂s, ŷs in Fig. 1). Able-
bodied humans have effective shapes specific to activities
such as walking or stationary swaying [20], and each shape
can be characterized by the curvature of the COP trajectory
with respect to a point Ps = (Xs, Ys)

T attached to the
shank reference frame (Fig. 1). This can be expressed as the
coordinate-free distance relationship

||Ps − COP || = Rs(COP ), (4)

where the radius of curvature Rs is a function of the COP. At
heel strike the COP is co-linear with our model’s stance leg
and condition (4) is necessarily satisfied, so the ys-component
of Ps is given by Ys =

√
R2

s (0, 0)−X2
s .

The x-component of the COP moves monotonically from
heel to toe during steady walking; this can be measured in
a variety of ways, as discussed in Section V. The COP can
therefore serve as the phase variable of a virtual constraint
corresponding to (4). We can express this constraint in the
COP reference frame (i.e., global axes x̂, ŷ in Fig. 1), for
which the effective center of rotation is given by PCOPs (q) =
(x, y)T +S(θs)Ps, where S(θs) is the standard rotation matrix
parameterized by angle θs. Equation (4) is then given in our
model coordinates by the kinematic constraint h(q) = 0 for

h(q) = (x+Xs cos(θs)− Ys sin(θs))
2 + (5)

(y +Xs sin(θs) + Ys cos(θs))
2 −R2

s (x, y).

This kinematic constraint represents the desired behavior of
the prosthetic ankle, which we can attempt to enforce in two
ways: impedance control or output linearizing control.

B. Impedance Control
Assume that h(q) = 0 can be solved for the leg angle θs =

φ(x, y), where map φ depends on function Rs and constant
Ps. (This assumption is valid for walking tasks, where Rs is a
constant.) The COP could then drive the progression of ankle
kinematics with the PD controller

u = −Kpe−Kdė, (6)

where e := θs − φ(x, y) is the tracking error.
This linear control law will not exactly enforce the desired

constraint (5) due to nonlinearities in the system dynamics.
For this purpose we now derive a model-based control law,
which will not require us to explicitly solve (5) for θs.

C. Output Linearizing Control
We wish to design a model-based control law for a

prosthetic ankle that enforces (5) as a virtual constraint. We
cannot expect to have a good model of the human user or
state measurements from intact joints in a clinically viable
system. We therefore use only our model of the prosthetic leg
and feedback provided by onboard sensors, specifically state
z = (qT , q̇T )T and interaction force F .

The coupled dynamics (1) of the weight-bearing prosthesis
can be given in a modified control-affine form (cf. [24]):

ż = f(z) + g(z)u+ j(z)F, (7)

where the vector fields are defined as

f(z) =

(
q̇

−M(q)−1
(
C(q, q̇)q̇ +N(q) +AT (q)λ

) ) , (8)

g(z) =

(
03×3

M−1(q)B

)
, j(z) =

(
03×3

M−1(q)JT (q)

)
.

Letting output ξ := h(z), our goal is to define a feedback
control law for u that drives ξ to zero in system (7). We first
examine the output dynamics of the above system:

ξ̇ = (∇zh)ż = Lfh+ (Lgh)u+ (Ljh)F, (9)

where the Lie derivative Lfh := (∇zh)f characterizes the
change of h along flows of vector field f [24], and it is easily
shown that Lgh = 0 and Ljh = 0 for all z. Noting that
no acceleration or control terms appear in Lfh, output ξ has
relative degree greater than one (cf. [24]) and we must take
another time-derivative to expose the control input u:

ξ̈ = L2
fh+ (LgLfh)u+ (LjLfh)F. (10)

Because the Lagrange multiplier defined in (3) explicitly
depends on the external joint torques, so does the second Lie
derivative L2

fh = L̂2
fh+ (L̃2

fh)u+ (L2
fh)F , where

L̂2
fh = (∇qLfh)q̇ − (∇q̇Lfh)M−1(Cq̇ +N +AT λ̂)

L̃2
fh = −(∇q̇Lfh)M−1AT λ̃

L2
fh = −(∇q̇Lfh)M−1AT λ̄. (11)

Note that vector A depends on foot radius Rf , which reflects
the compliance of the foot and can be measured a priori [19].

Grouping the control input terms from (10), we can solve
for the control law that inverts the output dynamics:

u =
1

D
(−L̂2

fh− (L2
fh+ LjLfh)F + v), (12)

where the denominator D = LgLfh + L̃2
fh only depends

on q and is strictly greater than zero for feasible walking
configurations. We then choose auxiliary input v to render
the output dynamics linear and exponentially stable:

ξ̈ = v := −Kpξ −Kdξ̇, (13)

for Kp,Kd > 0. Given sensor measurements of z and F and
actuation of u, we can obtain the closed-loop output dynamics
(13), which imply ξ(t) → 0 exponentially fast as t → ∞ for
ξ(0) 6= 0. During steady-state walking controller (12) will
maintain zero output error, so these PD gains will only serve
to correct errors resulting from perturbations. We now present
the full biped model for simulations with these controllers.



IV. BIPED MODEL AND SIMULATIONS

Now that we have designed two possible controllers for the
prosthetic leg, we wish to study both during simulated walking
with the full biped model of Fig. 1 (left). This requires us to
consider the coupled dynamics of the body and the controlled
prosthesis. In order to generate stable walking patterns for the
entire biped, we will exploit the existence of passive gaits.

Passive walking harnesses momentum and gravity to propel
forward motion without any control or actuation whatsoever
[25], [26]. Passive gaits arise on declined surfaces when the
potential energy converted into kinetic energy during each step
cycle replenishes the energy dissipated at impact events. This
behavior reflects certain characteristics of human walking,
such as ballistic motion during early stance [27] and energetic
efficiency down slopes [28]. We will start with an uncontrolled,
passive gait in the full biped model and augment the stance
leg with each of our prosthetic controllers.

A. Biped Model

For simplicity we do not distinguish between legs from
step to step (as in the case of a bilateral amputee). Each
leg in this symmetrical model employs the same control law
during single support with mass m, moment of inertia Irot,
and length `. We do not model the swing ankle because the
foot is assumed to be massless.

The configuration vector of the full biped is denoted by
q̆ = (qT , θns)

T , where θns is the hip (i.e., non-stance) angle.
The biped’s dynamics during single support are governed by
a differential equation of the form (1) until the swing foot
contacts the ground, which initiates the transition into the next
step cycle. We define a function Hγ(q̆) to give the height of the
heel of the swing foot above ground with slope angle γ, so heel
strike occurs when the state trajectory intersects the switching
surface G = {q̆ | Hγ(q̆) = 0}. The subsequent double-support
transition is modeled as an instantaneous impact event with
a perfectly plastic (inelastic) collision as in [12]. The state
trajectory is therefore subjected to the discontinuous impact
map ∆ (which also changes the values of θs, θns to re-label
the stance/swing legs) in the hybrid dynamical system:

M̆(q̆)¨̆q + C̆(q̆, ˙̆q) ˙̆q + N̆(q̆) + ĂT (q̆)λ̆ = τ̆ for q̆ /∈ G
(q̆+, ˙̆q+) = ∆(q̆−, ˙̆q−) for q̆ ∈ G

where superscripts +/− respectively denote the post- and
pre-impact states, τ̆ = [BT , 0]Tu (i.e., the swing leg moves
passively), and other accented terms associated with the full
model are defined as in Section II.

Note that during heel contact (x = y = 0) we use an
alternate constraint matrix A that fixes the heel position to
the ground (i.e., acts as a point foot since the rocker does not
go beyond the heel). We switch back to the rocker constraint
(3) when the unconstrained accelerations point in the positive
x-direction. Control torques are zeroed during heel contact
because virtual constraint (5) is automatically satisfied.

Walking gaits correspond to cyclic solutions of this hybrid
system, which we will analyze to determine gait stability.

TABLE I
MODEL PARAMETERS

Parameter Variable Value
Hip mass mh 31.73 [kg]
Leg mass m 13.5 [kg]
Leg inertia Irot 0.2 [kg·m2]
Leg length ` 0.856 [m]
Slope angle γ 0.0075 [rad]
Foot radius Rf 0.26 [m]
Effective radius Rs 0.45 [m]
Effective center Xs 0.005 [m]
Proportional gain Kp 352.38 [Nm/rad]
Derivative gain Kd 26.281 [Nm·s/rad]

B. Hybrid Solutions

Let z̆ = (q̆T , ˙̆qT )T be the state vector for the full biped.
Walking gaits correspond to solution curves z̆(t) of the hybrid
system such that z̆(t) = z̆(t + T ) for all t ≥ 0 and some
minimal T > 0. These solutions define isolated orbits in
state space known as hybrid limit cycles, which correspond
to equilibria of the Poincaré map P : G → G. This return
map represents a hybrid dynamical system as a discrete system
between impact events, sending state z̆j ∈ G ahead one step
to z̆j+1 = P (z̆j). A periodic solution z̆(t) then has a fixed
point z̆∗ = P (z̆∗).

We verify stability about a fixed point z̆∗ by approximating
the linearized map ∇z̆P (z̆∗) through a perturbation analysis
in simulation [25], [26]. The linearized discrete system is
exponentially stable if the eigenvalues of ∇z̆P (z̆∗) are within
the unit circle, by which we can infer local stability of the
hybrid limit cycle. We now simulate the biped model with our
controllers to generate walking gaits and verify their stability.

C. Simulation Parameters

During a normal walking task the radius of curvature Rs

is constant (i.e., the effective shape is a circular arc as in
Fig. 1, right). Since passive gaits typically involve short steps,
we will produce natural step lengths by adopting a large
effective radius of Rs = 0.45 m. The effective center of
rotation Ps = (Xs,

√
R2

s −X2
s )T is located behind the shank

with Xs = 5 mm (for walking in the negative x-direction)
based on the human studies of [17]. In order to compare the
gait characteristics resulting from passive walking, impedance
controller (6), and output linearizing controller (12), we now
describe the initial passive gait and define our control gains.

1) Passive Gait: We adopt the model parameters of Table
I based on adult (male) mean values reported by [29] with
trunk masses grouped at the hip. The rocker foot radius is set
to three-tenths of the leg length `, which is typical of human
foot compliance [22]. Given these parameters we can find a
passive walking gait (u = 0) on slope γ = 0.0075 rad using
the methods described in [26]. We will use this underlying
gait to study the effect of our prosthetic ankle controllers.

2) Impedance Control: For control law (6) we adopt Kp =
6(mh + 2m) Nm/rad based on normalized measurements of
human ankle stiffness from [30], and we choose a viscosity
value of Kd = 2ζ

√
Kp with damping ratio ζ = 0.7.

3) Output Linearization: The dynamics, interaction forces,
and control law (12) are simultaneously computed from both
the full biped model and the prosthesis model in MATLAB.



TABLE II
INFLUENCE OF EFFECTIVE RADIUS

Gait Descriptor Rs = 0.45 Rs = 0.40 Rs = 0.35

x-COP Range [m] 0.070 0.053 0.034
Step Length [m] 0.269 0.224 0.169
Step Duration [s] 0.851 0.841 0.831
Step Velocity [m/s] 0.316 0.266 0.203

Although the control gains have different units than the
impedance controller, we again choose Kp = 6(mh + 2m)
Nm/m2 and Kd = 2ζ

√
Kp to achieve damping ratio ζ = 0.7

in the linearized output dynamics (13).
We now present and compare results from these simulations.

D. Results

Starting with the previously described passive gait, we
implement each control law and allow the simulation to
converge to a steady-state walking gait (i.e., a fixed point).
We verify that for each control strategy the associated fixed
point is locally exponentially stable, using the procedure
described in [26]. The hybrid limit cycles for all three gaits
are superimposed in the phase portrait of Fig. 2.

Using the COP trajectory of the linearized gait, we compute
the desired stance leg angle φ(x, y) satisfying constraint (5).
Fig. 3 shows the desired trajectory over both time and COP x-
component (i.e., the phase variable). The desired leg angle is
equal to the actual leg angle for the first 550 ms of the stance
period, when the heel point is in contact with the ground. This
period causes the desired leg angle as a function of COP to be
non-unique (Fig. 3, center). We will discuss how this differs
from human walking in Section V.

We see in Fig. 4 that output linearization outperforms the
impedance controller in several ways. The linearized gait
has no output error during steady-state walking, whereas
error grows immediately after the foot starts rolling in the
impedance and passive cases (Fig. 4, left). Output linearization
causes more foot-rocking motion (which we would expect with
Rs > Rf ), as seen in the COP time-trajectory (Fig. 4, center)
and the effective shape (Fig. 5, top). Similarly, this controller
causes more ankle range of motion with wider steps in Fig.
3 (right). An interesting consequence of exactly enforcing
the desired effective shape is greater control torque prior to
contralateral heel strike (Fig. 4, right), which resembles the
power generation of the human ankle at toe-off [21].

Different effective radii are exactly enforced by output
linearization in Fig. 5 (middle). We see that the COP range of
motion increases with the effective radius. In general we find
that a larger radius implies faster walking with a wider step
length and a longer stance period (see Table II). Supplemental
videos of the animated walking gaits for Rs = 0.45 and
Rs = 0.35 are available at http://vimeo.com/38050625 and
http://vimeo.com/38052820, respectively.

V. DISCUSSION

Although our simple biped model has limitations, the
proposed control strategy has important advantages including
biomimetic performance and clinical viability.
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correspond to the body’s hip joint.

A. Positive Force Feedback

Although we did not explicitly design a push-off phase into
the control strategy, enforcing the effective shape provided a
biomimetic period of power generation as the COP approached
the toe. A positive feedback loop arises when COP movement
causes a positive ankle torque, which in turns causes the COP
to move further forward. This biomimetic behavior, resembling
the muscle reflex model in [9], might prevent compensatory
work production at the hip (cf. [4]) and allow lower-limb
amputees to expend normal levels of energy when walking.

B. Clinical Viability

This strategy requires tuning of only four control parameters
(Rs, Xs,Kp,Kd) for the entire single-support period, whereas
other control approaches have many more parameters during
stance (e.g., 18 for event-based impedance control [8], 14 for
a muscle model [9], or a human data set [10]). The effective
radius Rs is a trivial function of the user’s leg length and the
rotation center Xs determines the amount of ankle flexion,
offering a simple tuning procedure. Moreover, the output
linearization approach can accurately enforce constraints with
much smaller gains than standard PD control [15], which is
desirable for stability in the presence of feedback time delay
and for safety when interacting with humans.

We showed that output linearization can be achieved on
a powered prosthetic leg using measurements of interaction
forces in place of state feedback from the human body. The
COP can be sensed with a 3-axis load cell between the foot and
ankle joint or with a pressure sensor grid in the foot or shoe
insole [31]. Load cells are common in modern prosthetic legs
(e.g., [6]–[8]), and advanced filtering techniques for rhythmic
patterns can help estimate the COP [32]. A motorized ankle
would likely use an encoder to measure the relative angle θank

between the shank and foot (Fig. 1, right) rather than the global
angle used in our model. We can convert between angles by
θs = 2 arcsin( d

2Rf
) + γ − θank, but this requires knowledge

of the slope angle and the foot compliance. Fortunately the
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desired trajectories of relative ankle angle θank (zeroed at heel strike for the sake of comparison) from passive walking, impedance control (PD), and output
linearization (linz) simulations. Note that the small jumps in the desired trajectories are caused by numerical imprecision when switching contact constraints.
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Fig. 4. Comparison between steady-state gaits for passive walking, impedance control (PD), and output linearization (linz): output ξ (left), COP x-component
(center), and ankle torque (right) over time. Recall that ξ ≡ 0 corresponds to perfect enforcement of the effective shape, which we see with output linearization.

radii of curvature for many prosthetic feet have already been
characterized in [19], and various methods have been proposed
for measuring the slope angle during locomotion (e.g., inertial
measurement units or passive mechanical devices [33]).

C. Zero Dynamics
Output linearization provides ξ ≡ 0 in steady state, implying

that the surface Z = {z̆ | ξ = 0, ξ̇ = 0} is invariant1 under
the closed-loop dynamics. This surface is also hybrid invariant
since ξ = ξ̇ = 0 immediately after impact. The hybrid system
can therefore be restricted to its hybrid zero dynamics on
surface Z, which exactly characterize the biped as a lower-
dimensional hybrid system. Since output ξ represents the error
of the prosthetic control system, the hybrid zero dynamics
represent the coupled body. In our simulations we rendered
this system minimum phase (i.e., stabilized the zero dynamics
[24]) by exploiting the existence of an intrinsically stable
passive gait. This allowed the entire biped to converge to a
stable limit cycle even though the prosthetic ankle joint did not
coordinate with the body’s hip joint. We hypothesize that the
highly adaptable human neuromuscular system would provide
this minimum phase property in a real prosthetics application.

D. Model Limitations
The biped model we used to simulate our controller has

several limitations, including limited COP motion, the lack

1Any state trajectory initialized on an invariant surface of a continuous
system will remain on the surface for all time [24].

of a knee joint, and an instantaneous double-support phase.
Although humans have strictly monotonic COP trajectories
during steady walking (Fig. 6, top), our model has no COP
movement until 550 ms into the stance period (Fig. 4, center).
Numerical imprecision at this transition from heel contact to
rolling contact results in a small discontinuous jump in ankle
torque observed in Fig. 4 (right). It should also be noted
that the COP is not truly a position variable as modeled in
this paper, but rather a function of forces (i.e., a second-
order variable) [21]. However, COP movement during human
walking is associated with continuous foot deformation that
resembles rolling [18], [20], so feet are commonly modeled as
rockers to approximate the behavior of the ankle-foot complex,
including the COP [22]. A rocker foot model can then be
employed to derive the model-based prosthesis control law
(12) for a human application, where we can expect COP
motion to be more natural than in our passive walking model.

To demonstrate that our kinematic constraint applies to
realistic COP motion, we examine de-identified human data
from [30], in which able-bodied subjects walked 400 times
across a force plate at self-selected speeds. Subjects gave
written informed consent in accordance with the Northwestern
University Institutional Review Board. The mean effective
shapes (Fig. 5, bottom) have approximately constant curvature
as in our simulations (recall that we intentionally chose an
abnormally large radius to accelerate the slow passive gait).
We use the mean COP trajectory and Rs, Xs values from
one subject to compute the desired leg angle φ(x, y) in Fig.
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Fig. 5. Effective shapes (i.e., COP trajectories in shank coordinates) for
three control modes simulated with Rs = 0.45 (top), three effective radii
simulated under output linearization (middle), and three able-bodied human
subjects (bottom). Note that the human ankle joint is 50 mm above the heel,
causing an offset along the shank ys-axis.

6 (bottom). This COP-ankle relationship could similarly be
enforced via output linearization.

The lack of a knee joint also limits the anthropomorphism
of our model, but our control strategy can be extended to
a two-degree-of-freedom transfemoral prosthesis. Hansen et
al. showed that the knee-ankle-foot (KAF) effective shape–the
COP trajectory transformed into a coordinate frame attached to
the thigh–also has constant curvature during walking [18]. This
provides a second kinematic constraint from which the desired
knee angle can be determined from the COP and ankle angle.
Control of the knee could then be integrated into our proposed
controller using a vector output ξ. This control approach could
be tuned in a sequential manner, starting with the ankle-foot
constraint, which does not depend on the knee angle, and
ending with the KAF constraint.

A non-trivial double-support period could be modeled using
a compliant ground contact model, which has been done
in the context of output linearization [34]. However, the
constant-curvature property of the COP trajectory in shank
coordinates does not hold after contralateral heel strike. The
main challenge is then to extend the kinematic model of the
effective shape into the double-support period, possibly using
the theoretical COP of the support polygon (which can be
located between the two feet).

By relying on passive dynamics to generate joint patterns,
we were limited to testing our controller with a downhill
walking task. We can mimic human behavior on different
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Fig. 6. Top: COP x-component trajectory from one able-bodied human
subject. Bottom: desired stance leg angle φ(x, y) over COP x-component
from human data. To model the human foot we used a generalized form of
constraint (5) that includes a non-zero height (0.05 m) between the heel and
ankle joint with Rs = 0.26 m, Xs = 0.01 m from Fig. 5 (bottom).

slopes by rotating the effective center of rotation Ps by the
slope change [17]. Stationary fore-aft swaying also has a
constant effective radius–about six times that of a walking task
[20]. Kinematic constraint (5) allows the radius of curvature
Rs to be a function of the COP, which may be the case for
a stair climbing task. It is possible that (5) cannot be solved
for θs when Rs is non-constant, but unlike impedance control,
our linearizing controller does not require this form.

Despite these limitations, this simple model allowed a proof-
of-concept demonstration of our new control strategy. The
simplicity of this model is also beneficial for elucidating
biomechanical principles that are important in lower-limb
prostheses, such as quasi-stiffness [35].

VI. CONCLUSION

We showed that the effective shape between the COP
and ankle joint corresponds to a simple kinematic constraint,
which can be enforced as a virtual constraint by an output
linearizing control law using only feedback available to
sensors onboard a prosthetic leg. This controller exactly
enforced the desired effective shape during simulated walking,
whereas an impedance controller did not. Due to the invariance
of the effective shape over walking speeds, body weights,
and heel heights [17], this choice of constraint will allow
the prosthesis to naturally adapt to the user. The constraint
can also be systematically tuned to produce the effective



shapes corresponding to different activities, such as stationary
swaying or stair climbing, by changing the center of rotation
or the curvature radius/function.

Future work could integrate our control strategy with a
neural interface (e.g., via electromyography from residual
muscles [36]) to allow the user to subconsciously adapt the
constraint when anticipating a task change. Our formulation
of output linearization for prosthetics can also be used with
constraints unrelated to the effective shape. This general
framework motivates a new control theory for wearable robots,
including powered orthoses [37], [38], that will exploit hybrid
zero dynamics in assisted human locomotion.

We plan to implement our effective shape controller on the
Vanderbilt leg [8] at the Rehabilitation Institute of Chicago.
Ongoing work also includes perturbation experiments with
able-bodied human subjects to test our hypothesis that joint
patterns depend on the COP as a phase variable. Our hope
is that this work will elucidate the control mechanisms
behind human locomotion and enable translational designs for
clinically viable wearable robots.
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