20 research outputs found

    Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Get PDF
    The published literature debates the extent to which naturally occurring stratospheric ozone intrusions reach the surface and contribute to exceedances of the U.S. National Ambient Air Quality Standard (NAAQS) for ground-level ozone (75 ppbv implemented in 2008). Analysis of ozonesondes, lidar, and surface measurements over the western U.S. from April to June 2010 show that a global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models. Thirteen intrusions enhanced total daily maximum 8-h average (MDA8) ozone to ∼70–86 ppbv at surface sites. With a stratospheric ozone tracer defined relative to a dynamically varying tropopause, we find that stratospheric intrusions can episodically increase surface MDA8 ozone by 20–40 ppbv (all model estimates are bias corrected), including on days when observed ozone exceeds the NAAQS threshold. These stratospheric intrusions elevated background ozone concentrations (estimated by turning off North American anthropogenic emissions in the model) to MDA8 values of 60–75 ppbv. At high-elevation western U.S. sites, the 25th–75th percentile of the stratospheric contribution is 15–25 ppbv when observed MDA8 ozone is 60–70 ppbv, and increases to ∼17–40 ppbv for the 70–85 ppbv range. These estimates, up to 2–3 times greater than previously reported, indicate a major role for stratospheric intrusions in contributing to springtime high-O3events over the high-altitude western U.S., posing a challenge for staying below the ozone NAAQS threshold, particularly if a value in the 60–70 ppbv range were to be adopted

    Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPP Campaigns

    Get PDF
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry xperiment (FRAPP) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than 15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than 5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts

    TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    Get PDF
    NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation

    Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Get PDF
    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere

    Ozone Lidar Observations for Air Quality Studies

    Get PDF
    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes

    TOLNET – A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    No full text
    Ozone lidars measure continuous, high-resolution ozone profiles critical for process studies and for satellite validation in the lower troposphere. However, the effectiveness of lidar validation by using single-station data is limited. Recently, NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly timeresolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation. This article briefly describes the concept, stations, major specifications of the TOLNet instruments, and data archiving
    corecore