876 research outputs found

    Regular phantom black hole gravitational lensing

    Get PDF
    We study regular and asymptotically flat phantom black holes as gravitational lenses. We obtain the deflection angle in both the weak and the strong deflection limits, from which we calculate the positions, magnifications, and time delays of the images. We compare our results with those corresponding to the Schwarzschild solution and to the vacuum Brans-Dicke black hole.Comment: 14 pages, 4 figures; v2: improved and extended version, new references added. Accepted for publication in Phys. Rev.

    Strong deflection lensing by charged black holes in scalar-tensor gravity

    Get PDF
    We examine a class of charged black holes in scalar-tensor gravity as gravitational lenses. We find the deflection angle in the strong deflection limit, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to the Reissner-Norstrom spacetime and we analyze the observational aspects in the case of the Galactic supermassive black hole.Comment: 12 pages, 3 figures; v2: improved version, new references adde

    Rational conchoid and offset constructions: algorithms and implementation

    Get PDF
    This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages

    Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination

    Get PDF
    Plastic litter is an issue of global concern. In this work Mytilus galloprovincialis was used to study the distribution and effects of polystyrene nanoplastics (PS NPs) of different sizes (50 nm, 100 nm and 1 mu m) on immune cells. Internalization and translocation of NPs to hemolymph were carried out by in vivo experiments, while endocytic routes and effects of PS NPs on hemocytes were studied in vitro. The smallest PS NPs tested were detected in the digestive gland and muscle. A fast and size-dependent translocation of PS NPs to the hemolymph was recorded after 3 h of exposure. The internalization rate of 50 nm PS NPs was lower when caveolae and clathrin endocytosis pathways were inhibited. On the other hand, the internalization of larger particles decreased when phagocytosis was inhibited. The hemocytes exposed to NPs had changes in motility, apoptosis, ROS and phagocytic capacity. However, they showed resilience when were infected with bacteria after PS NP exposure being able to recover their phagocytic capacity although the expression of the antimicrobial peptide Myticin C was reduced. Our findings show for the first time the translocation of PS NPs into hemocytes and how their effects trigger the loss of its functional parameters

    A Free-Form Lensing Grid Solution for A1689 with New Mutiple Images

    Get PDF
    Hubble Space Telescope imaging of the galaxy cluster Abell 1689 has revealed an exceptional number of strongly lensed multiply-imaged galaxies, including high-redshift candidates. Previous studies have used this data to obtain the most detailed dark matter reconstructions of any galaxy cluster to date, resolving substructures ~25 kpc across. We examine Abell 1689 (hereafter, A1689) non-parametrically, combining strongly lensed images and weak distortions from wider field Subaru imaging, and we incorporate member galaxies to improve the lens solution. Strongly lensed galaxies are often locally affected by member galaxies, however, these perturbations cannot be recovered in grid based reconstructions because the lensing information is too sparse to resolve member galaxies. By adding luminosity-scaled member galaxy deflections to our smooth grid we can derive meaningful solutions with sufficient accuracy to permit the identification of our own strongly lensed images, so our model becomes self consistent. We identify 11 new multiply lensed system candidates and clarify previously ambiguous cases, in the deepest optical and NIR data to date from Hubble and Subaru. Our improved spatial resolution brings up new features not seen when the weak and strong lensing effects are used separately, including clumps and filamentary dark matter around the main halo. Our treatment means we can obtain an objective mass ratio between the cluster and galaxy components, for examining the extent of tidal stripping of the luminous member galaxies. We find a typical mass-to-light ratios of M/L_B = 21 inside the r<1 arcminute region that drops to M/L_B = 17 inside the r<40 arcsecond region. Our model independence means we can objectively evaluate the competitiveness of stacking cluster lenses for defining the geometric lensing-distance-redshift relation in a model independent way.Comment: 23 pages with 25 figures Replced with MNRAS submitted version. Some figures have been corrected and minor text edit

    Total Degree Formula for the Generic Offset to a Parametric Surface

    Full text link
    We provide a resultant-based formula for the total degree w.r.t. the spatial variables of the generic offset to a parametric surface. The parametrization of the surface is not assumed to be proper.Comment: Preprint of an article to be published at the International Journal of Algebra and Computation, World Scientific Publishing, DOI:10.1142/S021819671100680

    High-contrast 40 Gb/s operation of a 500 um long silicon carrier-depletion slow wave modulator

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.003504. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] In this Letter, we demonstrate a highly efficient, compact, high-contrast and low-loss silicon slow wave modulator based on a traveling-wave Mach¿Zehnder interferometer with two 500 &#956;m long slow wave phase shifters. 40 Gb &#8725; s operation with 6.6 dB extinction ratio at quadrature and with an on-chip insertion loss of only 6 dB is shown. These results confirm the benefits of slow light as a means to enhance the performance of silicon modulators based on the plasma dispersion effect.Funding by the European Commission (EC) under project Photonics Electronics Functional Integration on CMOS (HELIOS) (FP7224312) and PROMETEO-2010- 087 R&D Excellency Program are acknowledged. F.Y.G, D.J.T. and G.T.R. acknowledge funding support from the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) under the grant “UK Silicon Photonics”.Brimont, ACJ.; Thomson, DJ.; Gardes, FY.; Fedeli, JM.; Reed, GT.; Martí Sendra, J.; Sanchis Kilders, P. (2012). High-contrast 40 Gb/s operation of a 500 um long silicon carrier-depletion slow wave modulator. Optics Letters. 37(17):3504-3506. https://doi.org/10.1364/OL.37.003504S350435063717Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., … Paniccia, M. (2007). 40 Gbit/s silicon optical modulator for high-speed applications. Electronics Letters, 43(22), 1196. doi:10.1049/el:20072253Gardes, F. Y., Thomson, D. J., Emerson, N. G., & Reed, G. T. (2011). 40 Gb/s silicon photonics modulator for TE and TM polarisations. Optics Express, 19(12), 11804. doi:10.1364/oe.19.011804Thomson, D. J., Gardes, F. Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., … Reed, G. T. (2011). High contrast 40Gbit/s optical modulation in silicon. Optics Express, 19(12), 11507. doi:10.1364/oe.19.011507Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., … Martí, J. (2011). High speed silicon electro-optical modulators enhanced via slow light propagation. Optics Express, 19(21), 20876. doi:10.1364/oe.19.020876Ziebell, M., Marris-Morini, D., Rasigade, G., Fédéli, J.-M., Crozat, P., Cassan, E., … Vivien, L. (2012). 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Optics Express, 20(10), 10591. doi:10.1364/oe.20.010591Dong, P., Chen, L., & Chen, Y. (2012). High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Optics Express, 20(6), 6163. doi:10.1364/oe.20.006163Taylor, H. F. (1999). Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation. Journal of Lightwave Technology, 17(10), 1875-1883. doi:10.1109/50.793770O’Faolain, L., Beggs, D. M., White, T. P., Kampfrath, T., Kuipers, K., & Krauss, T. F. (2010). Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals. IEEE Photonics Journal, 2(3), 404-414. doi:10.1109/jphot.2010.2047918Brimont, A., Vicente Galán, J., Maria Escalante, J., Martí, J., & Sanchis, P. (2010). Group-index engineering in silicon corrugated waveguides. Optics Letters, 35(16), 2708. doi:10.1364/ol.35.002708Soref, R., & Bennett, B. (1987). Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 23(1), 123-129. doi:10.1109/jqe.1987.1073206Nguyen, H. C., Sakai, Y., Shinkawa, M., Ishikura, N., & Baba, T. (2011). 10 Gb/s operation of photonic crystal silicon optical modulators. Optics Express, 19(14), 13000. doi:10.1364/oe.19.013000Dong, P., Liao, S., Liang, H., Qian, W., Wang, X., Shafiiha, R., … Asghari, M. (2010). High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage. Optics Letters, 35(19), 3246. doi:10.1364/ol.35.00324
    corecore