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Abstract We examine a class of charged black holes in
scalar–tensor gravity as gravitational lenses. We find the
deflection angle in the strong deflection limit, from which we
obtain the positions and the magnifications of the relativis-
tic images. We compare our results with those correspond-
ing to the Reissner–Norström spacetime and we analyze the
observational aspects in the case of the Galactic supermassive
black hole.

1 Introduction

The discovery of supermassive black holes at the center of
galaxies, specially the one corresponding to SgrA* in the
Milky Way [1], has led to a growing interest in the study
of strong deflection gravitational lensing. Within this con-
text, an important feature is that the observation of optical
effects due to the supermassive Galactic black hole, includ-
ing direct imaging, seems to be possible in the near future
[2–9]. An astrophysical object with a photon sphere makes
light rays passing close to it to have a large deviation, result-
ing in two infinite sets of the denominated relativistic images
[10]. In this case, an analytical treatment can be performed
by using the strong deflection limit, which was introduced
for the Schwarzschild geometry [11–15], extended to the
Reissner–Nordström spacetime [16,17], and to any spher-
ically symmetric object [18]. Using this method, which con-
sists in a logarithmic approximation of the deflection angle
for light rays deflecting close to the photon sphere, it is pos-
sible to obtain the positions, the magnifications, and the time
delays of the relativistic images. Many works considering
strong deflection lenses with spherical symmetry, most of
them analytical and the others numerical, can be found in
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the literature [19–38]. The lensing effects of rotating black
holes were also analyzed in several articles [39–45]; a related
interesting aspect is that the apparent shapes (or shadows) of
rotating black holes have a deformation produced by the spin
[45–60]. For recent reviews about strong deflection lensing
see [61,62].

The usual explanation for the accelerated expansion
[63,64] of the Universe is that it is filled with a negative
pressure fluid called dark energy [65] which represents about
70 % of the total, while the other 30 % corresponds to vis-
ible and dark matter. The simplest equation of state for the
main component is the linear expression p = wρ, between
the pressure p and the energy density ρ; depending on the
values of w the fluid receives different names: quintessence
(w > −1), cosmological constant (w = −1), and phantom
energy (w < −1). Dark energy can be modeled by a self-
interacting scalar field with a potential [65]. In this context,
dilaton and phantom field solutions with spherical symme-
try corresponding to black holes, wormholes, and black uni-
verses were found by several authors [66–69]; while black
holes in scalar–tensor gravity were analyzed in the works
[70–73]. Phantom black holes [74–77] and black holes in
Brans–Dicke theory [78] were recently studied as gravita-
tional lenses.

In this article we investigate as gravitational lenses a class
of charged black holes in scalar–tensor gravity introduced
in Ref. [70]. In the framework of General Relativity with a
minimally coupled scalar φ and electromagnetic Fμν fields
as sources, we consider in the Einstein frame the Lagrangian
(in units such that 8πG = c = 1) given by

L = 1

2
[R + gμνφ,μφ,ν − 2V (φ)− Fμν Fμν]. (1)

with R the Ricci scalar and V (φ) the scalar field potential.
The Einstein-scalar equations resulting from this Lagrangian
admit a static and spherically symmetric solution in the form
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ds2 = A(ρ)dt2 − B(ρ)dr2 − C(ρ)(dθ2 + sin2 θdφ2), (2)

with metric functions

A(ρ) = A0r2 + 1+ 3M

[
− ρ

b2 +
r2

2b3 ln
ρ + b

ρ − b

]

− Q2

b4

[
b2 − bρ ln

ρ + b

ρ − b
+ r2

4
ln2 ρ + b

ρ − b

]
,

B(ρ) = 1

A(ρ)
, C(ρ) = r2(ρ),

and the scalar field

φ(ρ) = φ0 +
√

2

2
ln

ρ + b

ρ − b
, (3)

V (ρ) = − A0(3ρ2 − b2)

r2 + 9Mρr2 + Q2(3ρ2 − 2b2)

b2r4

−3M(3ρ2 − b2)+ 6Q2ρ

2b3r2 ln
ρ + b

ρ − b

+Q2(3ρ2 − b2)

4b4r2 ln2 ρ + b

ρ − b
, (4)

where r2(ρ) = ρ2 − b2, b is an arbitrary constant, and M
is the mass; A0 and φ0 are integration constants. The corre-
sponding Maxwell fields are radial electric F01 F10 = Q2

e/r4

and magnetic F23 F23 = Q2
m/r4; then Q2 = Q2

e+Q2
m is the

square of the electromagnetic charge. The parameter b repre-
sents a characteristic length associated to the scalar field. The
radial coordinate satisfies the inequality ρ ≥ |b|; the value
ρ = |b| corresponds to the singularity. We adopt A0 = 0, so
the metric is asymptotically flat for ρ →∞; in this case the
metric is approximately Reissner–Nordström for large ρ.

The paper is organized as follows. In Sect. 2, we review
the main physical properties of the spacetime, we introduce
the lens equation, and we obtain the exact expression for the
deflection angle. In Sect. 3, we find the strong deflection limit,
from which we calculate the positions and magnifications of
the relativistic images. In Sect. 4 we find the observables and
we analyze the observational prospects for the case of SgrA*.
Finally, in Sect. 5, we summarize the results obtained.

2 Deflection angle

We start by adopting the asymptotic flatness condition A0 =
0 and also adimensionalizing the metric (2) in terms of the
mass, introducing the new radial and time coordinates

x = ρ

M
, t̃ = t

M
, (5)

and the parameters

q = Q

M
, b̃ = b

M
; (6)

so the line element has the form

ds2 = A(x)dt̃2 − B(x)dx2 − C(x)(dθ2 + sin2 θdφ2), (7)

where

A(x) = 1+ 3

[
− x

b̃2
+ (x2 − b̃2)

2b̃3
ln

x + b̃

x − b̃

]

− q2

b̃4

[
b̃2 − b̃x ln

x + b̃

x − b̃
+ x2 − b̃2

4
ln2 x + b̃

x − b̃

]
,

B(x) = 1

A(x)
, C(x) = x2 − b̃2.

We can take b̃ ≥ 0 and q ≥ 0 without losing general-
ity because the metric is invariant under the transformations
b̃ ←→ −b̃ and q ←→ −q. The radius of the event hori-
zon xh , obtained numerically for each b̃ �= 0 as the largest
value of x satisfying the condition A(x) = 0, is a decreasing
function of the charge q. For a given b̃, there is a value of
charge which corresponds to the extremal black hole; for a
larger q there is a naked singularity. In the limit b̃ → 0 the
geometry (7) reduces to the Reissner–Nordström spacetime,
with metric functions A(x) = B(x)−1 = 1− 2x−1+ q2x−2

and C(x) = x2, for which the event horizon radius is given
by xh = 1+√

1− q2. As b̃ increases, the range of values of
q for which there is a horizon, becomes smaller, as shown in
Fig. 1. The adimensionalized radius x ps of the photon sphere
is given by the largest positive solution of the equation

A′(x)

A(x)
= C ′(x)

C(x)
, (8)

where the prime represents the derivative with respect to x .
Replacing the metric functions and simplifying, this equation
takes the form

3− x − q2

b̃
ln

x + b̃

x − b̃
= 0, (9)

which can be solved numerically for the different values of
the parameter b̃ �= 0 and the charge q (except in the trivial
case q = 0 which gives x ps = 3 for all b̃). In the case
of the Reissner–Nordström geometry we have x ps = (3 +√

9− 8q2)/2. For a given value of b̃, from Fig. 1 we see that
x ps decreases as the charge increases; there is a small range
of q for which there is a naked singularity surrounded by a
photon sphere.

The exact deflection angle α for a photon coming from
infinity is related to the adimensionalized closest approach
distance x0, by the expression [19,79]

α(x0) = I (x0)− π, (10)
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Fig. 1 Adimensionalized radius of the horizon xh and of the pho-
ton sphere x ps as functions of the adimensionalized charge q for
some representative values of the adimensionalized parameter b̃: 1

(dashed line), 2 (dash-dotted line) and 2.5 (dotted line); the plots cor-
responding to the Reissner–Nordström spacetime are also shown (solid
line)

where the integral

I (x0) =
∫ ∞

x0

2
√

B(x)dx√
C(x)

√
A(x0)C(x) [A(x)C(x0)]−1 − 1

,

(11)

is a monotonic decreasing function of x0. For photons passing
close to the photon sphere, the deflection angle is large and
diverges in the limit x0 → x ps . On the other hand, when
x0 →∞we have α→ 0. In a gravitational lensing scenario,
the deflection angle is related to the angular position of the
source (β) and the images (θ ) by the lens equation. For the
object acting as a lens (l) placed between a point source of
light (s) and an observer (o), both situated in the flat region
of spacetime, the lens equation has the form [21]

tan β = dol sin θ − dls sin(α − θ)

dos cos(α − θ)
, (12)

where dos, dol, and dls, are the observer–source, observer–
lens, and lens–source adimensionalized angular diameter dis-
tances, respectively. To obtain the positions of the images θ ,
for a given source position β one has to calculate the deflec-
tion angle α and invert the lens equation (12). For an analyt-
ical treatment, some approximations are necessary for both
the deflection angle and the lens equation. As we are inter-
ested in the lensing phenomena characteristic of black holes,
we restrict ourselves to the strong deflection scenario, i.e. to
the study of photons having a close approach to the com-
pact lens. We adopt an approximate analytical method, the
so-called strong deflection limit [18].

3 Strong deflection limit

When the photons pass close enough to the photon sphere (i.e.
when x0 is close to x ps), they experiment one or several turns
around the black hole lens before emerging to the observer.
The deflection angle is greater than 2π , and two infinite sets
of relativistic images are formed, one on each side of the lens.

To study this situation, we use the fact that for a spherically
symmetric lens the integral (11) can be split [18] into a sum
of a divergent ID(x0) and a regular IR(x0) terms:

I (x0) = ID(x0)+ IR(x0), (13)

where

ID(x0) =
∫ 1

0
R(0, x ps) f0(z, x0)dz (14)

and

IR(x0) =
∫ 1

0
[R(z, x0) f (z, x0)− R(0, x ps) f0(z, x0)]dz,

(15)

with

z = A(x)− A(x0)

1− A(x0)
, (16)

R(z, x0) = 2
√

A(x)B(x)

A′(x)C(x)
[1− A(x0)]

√
C(x0), (17)

f (z, x0) = 1√
A(x0)− [(1− A(x0))z + A(x0)]C(x0)[C(x)]−1

.

(18)

After a Taylor expansion of the argument inside the square
root in Eq. (18) to second order in z, one obtains

f0(z, x0) = 1√
ϕ(x0)z + γ (x0)z2

, (19)

where

ϕ(x0) = 1− A(x0)

A′(x0)C(x0)

[
A(x0)C

′(x0)− A′(x0)C(x0)
]
,

(20)
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γ (x0) = [1− A(x0)]2

2[A′(x0)]3[C(x0)]2
{

2[A′(x0)]2C(x0)C
′(x0)

−A(x0)A′′(x0)C(x0)C
′(x0)

+A(x0)A′(x0)
[
C(x0)C

′′(x0)− 2[C ′(x0)]2
]}

.

(21)

The expression for R(z, x0) is regular for all values of
z and x0. From Eq. (20), it is immediate that ϕ = 0 when
x0 = x ps , so we have f0 ∼ 1/z, and the term ID diverges
logarithmically. For all values of x0 �= x ps , we can see
that f0 ∼ 1/

√
z and ID converges. With these definitions,

ID is the term containing the divergence and IR is regular
everywhere, because it has the divergence corresponding to
x0 = x ps subtracted. Then the deflection angle in the strong
deflection limit can be written as follows [18]:

α(u) = −c1 ln

(
u

u ps
− 1

)
+ c2 + O(u − u ps), (22)

where

u =
√

C(x0)

A(x0)
(23)

is the impact parameter of the photon, and u ps is the impact
parameter evaluated at x0 = x ps . The quantities c1 and c2

are the strong deflection limit coefficients, which depend only
on the metric functions. In terms of the expressions defined
above, they result in

c1 = R(0, x ps)

2
√

γ (x ps)
(24)

and

c2 = −π + cR + c1 ln
2γ (x ps)

A(x ps)
, (25)

with

cR = IR(x ps). (26)

For the charged black hole in scalar–tensor gravity, with
metric (7) and b̃ �= 0, we obtain

u ps =
2b̃2

√
x2

ps − b̃2

√
4b̃2

(
b̃2 − q2 − 3x ps

)
+ ξps

[
−6b̃3 + 2b̃x ps

(
3x ps + 2q2

)− q2ξps

(
x2

ps − b̃2
)] , (27)

R(0, x ps) =
√

x2
ps − b̃2

{
4b̃2

(
3x ps + q2

)+ ξps

[
6b̃3 − 2b̃x ps

(
3x ps + 2q2

)+ q2ξps

(
x2

ps − b̃2
)]}

4b̃2
[
3b̃2 − x ps

(
3x ps + q2

)]+ (
x2

ps − b̃2
)

ξps

[
4b̃q2 + 6b̃x ps − q2x psξps

] , (28)

and

γ (x ps) = −�2

4b̃�3
, (29)

where

ξps = ln

(
x ps + b̃

x ps − b̃

)
, (30)

� = −b̃q2ξ2
ps(x2

ps − b̃2)
{

9b̃2 + x ps
[
x ps(4x ps − 45)− 18q2]}

−q4ξ3
ps

(
b̃4 − 6b̃2x2

ps + 5x4
ps

)

+4b̃3
{

3b̃4 + b̃2 [
q2(2x ps − 3)+ 9x ps(x ps − 5)

]

−x ps
(
3x ps + q2) [

2q2 + x ps(4x ps − 15)
]}

−2b̃2ξps

{
b̃4 (

2q2 + 9
)− 2b̃2 [

q4 − 3q2x ps(x ps − 9)

−3x2
ps(2x ps − 9)

]

+x2
ps

[
6q4 − 2q2x ps(4x ps − 27)− 3x2

ps(4x ps − 15)
]}

,

(31)

 = 4b̃2
(

3x ps + q2
)
+ ξps

[
6b̃3 − 2b̃x ps

(
3x ps + 2q2

)

+q2ξps

(
x2

ps − b̃2
)]

, (32)

and

� = 4b̃2
[
3b̃2 − x ps

(
3x ps + q2

)]
+ ξps

(
x2

ps − b̃2
) [

4b̃q2

+6b̃x ps − q2ξps x ps

]
. (33)

The integral cR can be approximated for small values of b̃
and q by its second order Taylor expansion

cR = ln[36(7− 4
√

3)] + 1

135
(−9+ 2

√
3)b̃2

+ 2

9

{
−4+√3+ ln[6(2−√3)]

}
q2, (34)
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Fig. 2 Strong deflection limit coefficients c1 and c2 as functions of the
adimensionalized charge q for some representative values of the adi-
mensionalized parameter b̃: 1 (dashed line), 2 (dash-dotted line) and

2.5 (dotted line); the plots corresponding to the Reissner–Nordström
spacetime are also shown (solid line)

and it can be obtained numerically for arbitrary b̃ and q.
For the Reissner–Nordström spacetime, which was studied
previously [16–18], the expressions are simpler:

u ps =
x2

ps√
x ps − q2

, (35)

R(0, x ps) = 2x ps − q2

x ps − q2 , (36)

and

γ (x ps) =
(
2x ps − q2

)2
[
4q4 − 9q2x ps − (x ps − 6)x2

ps

]

4x2
ps

(
x ps − q2

)3 ,

(37)

where x ps = (3+√
9− 8q2)/2. The integral cR in this case

can be approximated for small q by taking b̃ = 0 in Eq. (34),
and calculated numerically for any q, using the correspond-
ing metric in Eq. (26). The plots of the strong deflection limit
coefficients c1 and c2 as functions of the charge, for different
values of the parameter b̃, are shown in Fig. 2, along with
the Reissner–Nordström ones, for comparison. For a fixed b̃,
the coefficient c1 is positive and grows with the charge q,
when q = 0 the Schwarzschild value c1 = 1 is recovered for
all b̃; the coefficient c2 is negative and has a slow increase
(becomes less negative) with q until it abruptly decreases. For
a fixed q, the coefficient c1 increases with b̃; the coefficient
c2 increases (becomes less negative) with b̃ for a constant
(and not very large) q.

The positions of the relativistic images are obtained from
the lens equation (12), by replacing the deflection angle (22)
in terms of the strong deflection limit coefficients c1 and c2.
We consider that the objects are highly aligned, since it is the
case for which the lensing effects are more significant. In this
approximation, the angles β and θ are small, so the deflection
angle for photons passing close to the photon sphere can be

written in the form α = 2nπ + �αn , with n ∈ N, and
0 < �αn � 1. Then the lens equation (12) simplifies to

β = θ − dls

dos
�αn . (38)

For the photons passing by the other side of the lens we
have to replace α by −α, i.e. substitute �αn by −�αn in
the previous equation. In this small angles approximation,
from the lens geometry the impact parameter results in u =
dol sin θ ≈ dolθ . Using this relation, inverting Eq. (22), and
keeping only the first order term in the Taylor expansion
around α = 2nπ , the angular position of the nth relativistic
image is given by

θn = θ0
n − ζn�αn, (39)

where

θ0
n =

u ps

dol

[
1+ e(c2−2nπ)/c1

]
, (40)

and

ζn = u ps

c1dol
e(c2−2nπ)/c1 . (41)

From Eqs. (38) and (39), we have �αn = (θn − β)dol/dls.
Then

θn = θ0
n −

ζndos

dls
(θn − β). (42)

Since ζndol/dls is a small correction to θn because 0 <

ζndol/dls � 1, the angular positions of the relativistic images
finally take the form

θn = θ0
n +

ζndos

dls
(β − θ0

n ) (43)
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for one set and

θn = −θ0
n +

ζndos

dls
(β + θ0

n ) (44)

for the other one. The magnification of the nth relativistic
image is given by the quotient of the solid angles subtended
by the image and the source

μ =
∣∣∣∣ sin β

sin θn

dβ

dθn

∣∣∣∣
−1

. (45)

Then, replacing Eq. (43) in Eq. (45) and considering small
angles, we obtain

μn = 1

β

[
θ0

n +
ζndos

dls
(β − θ0

n )

]
ζndos

dls
, (46)

for both sets of relativistic images. By performing a first order
Taylor expansion in ζndol/dls, the magnification of the nth
relativistic image finally results

μn = 1

β

θ0
n ζndos

dls
. (47)

By replacing Eqs. (40) and (41) in Eq. (47), we see that
the magnifications decrease exponentially with n, so the first
relativistic image is the brightest one. Unless the lens and
the source are highly aligned (β ≈ 0), the magnifications are
very faint because the factor (u ps/dol)

2 in Eq. (47) is very
small.

4 Observables

The direct observation of the supermassive black hole at the
Galactic center and also those present in nearby galaxies is
expected to be possible in the next years, when the instru-
ments RADIOASTRON [2–4,80], Millimetron [5], Event
Horizon Telescope [81] and MAXIM [82] will be opera-
tional. RADIOASTRON is a space-based radio telescope,

with an angular resolution of about 1–10 µas. The space-
based Millimetron mission will have an angular resolution
of 0.3 µas or less at 0.4 mm. The Event Horizon telescope
will combine (by using very long baseline interferometry)
existing and future radio facilities into a high-sensitivity,
high angular resolution telescope. The MAXIM project is a
space-based X-ray interferometer with an expected angular
resolution of about 0.1 µas. The recent works [6–9] discuss
the observational aspects of the Galactic supermassive black
hole, including the strong deflection of light.

In order to compare our results with possible future obser-
vations, we introduce the quantities [18]

θ∞ = u ps

dol
, (48)

s = θ1 − θ∞, (49)

and

r = μ1∑∞
n=2 μn

. (50)

The observable s is the angular separation between the first
relativistic image (which is the outermost and brightest one)
and the limiting value of all the others, which are packed
together at θ∞. The observable r is the quotient between
the flux of the first relativistic image and the resulting flux
coming from all the others. These observables are defined for
the values of b̃ and q for which the relativistic images exist,
i.e. when the photon sphere is present. Using Eqs. (43) and
(47), it is not difficult to see that these observables, in terms
of the strong deflection limit coefficients, are given by

s = θ∞e(c2−2π)/c1 (51)

and

r = e2π/c1 . (52)

The plots of r and the quotient s/θ∞ are shown in Fig. 3
as functions of q for several values of b̃ and also for the
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Fig. 3 The observables r and s/θ∞ as functions of the adimensionalized charge q for different values of the adimensionalized parameter b̃: 1
(dashed line), 2 (dash-dotted line) and 2.5 (dotted line); the plots corresponding to the Reissner–Nordström spacetime are also shown (solid line)
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Reissner–Nordström geometry. We see that for a given value
of b̃, the observable r decreases with the charge q from the
value e2π for q = 0 to a minimum value in the extremal
case, while the quotient s/θ∞ increases with q, reaching a
maximum at the extremal value of q. For a fixed value of q,
we see that r decreases with b̃, while s/θ∞ grows with b̃. In
all cases the observables are plot until the charge reaches the
largest possible value compatible with the presence of the
horizon.

The Galactic center supermassive black hole [1] has a
mass M = 4.31 × 106 M and is situated at a distance
from the Earth Dol = 8.33 kpc. For a numerical exam-
ple, we can take Dos = 2Dol as the value of the dis-
tance between the observer and the source, an angular posi-
tion of the source β = 0.5 θ∞, and b̃ = 1. From the
equations above, for q = 0.1 we obtain that the limiting
value of the angular positions of the relativistic images is
θ∞ = 25.58 μas, with the first image separated from it
by s = 0.0332 μas; the magnification of the first strong
deflection image is μ1 = 6.44 × 10−13, and the quotient
between the flux of the first image and the flux coming from
all the others is r = 531.3. The corresponding values for
the Reissner–Nordström spacetime are θRN∞ = 26.49 μas,
sRN = 0.0334 μas, μRN

1 = 6.48× 10−13, and rRN = 531.7.
If q = 0.5 we find that θ∞ = 24.35 μas, s = 0.0403
μas, μ1 = 7.54 × 10−13, r = 424.9, and the Reissner–
Nordström values θRN∞ = 25.37 μas, sRN = 0.0394 μas,
μRN

1 = 7.42 × 10−13, and rRN = 438.3. The images are
highly demagnified, because the value of β used in the cal-
culations is not very small compared with θ∞. We see that
the differences between the results corresponding to the two
spacetimes are quite small. The observation of subtle differ-
ences coming from the comparison of different black hole
models, such as those presented here, will require more
advanced future instruments than the ones mentioned above.

5 Summary

We have studied the strong deflection lensing effects pro-
duced by black holes belonging to a class of charged solutions
in scalar–tensor gravity. These spacetimes, characterized by
the mass M , the charge Q, and the parameter b associated to
the scalar field, have a horizon surrounded by a photon sphere
if the charge is below the extremal one. We have obtained
the deflection angle in terms of b/M and Q/M by using
the strong deflection limit, from which we have calculated
the positions and magnifications of the relativistic images,
and also the corresponding observables. We have found that
for fixed b/M , the limiting value of the image positions θ∞
decreases when Q/M increases, the relative separation s/θ∞
between the first image and this limiting value grows with
Q/M , and the relative intensity r of the first image with

respect to the others decreases with Q/M . For a given value
of Q/M , we find that θ∞ diminishes when b/M grows, s/θ∞
increases with b/M , and r decreases with b/M . In particular,
with nonzero b/M , for the scalar–tensor black holes we find
that θ∞ is smaller, s/θ∞ is larger, and r is smaller than the
corresponding values for the Reissner–Nordström spacetime
with the same value of Q/M . The differences between the
results for these geometries are very small, not detectable
with current or near future facilities.
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