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Abs t r ac t . This paper is framed within the problem of analyzing the 
rationality of the components of two classical geometric constructions, 
namely the offset and the conchoid to an algebraic plane curve and, 
in the affirmative case, the actual computation of parametrizations. We 
recall some of the basic definitions and main properties on offsets (see 
[13]), and conchoids (see [15]) as well as the algorithms for parametrizing 
their rational components (see [1] and [16], respectively). Moreover, we 
implement the basic ideas creating two packages in the computer algebra 
system Maple to analyze the rationality of conchoids and offset curves, 
as well as the corresponding help pages. In addition, we present a brief 
atlas where the offset and conchoids of several algebraic plane curves are 
obtained, their rationality analyzed, and parametrizations are provided 
using the created packages. 

Introduction 

In this paper we deal with two different geometric constructions that appear in 
many practical applications, where the need of proving rational parametrizations 
as well as automatized algorithmic processes is important . On one side we con­
sider offset varieties and on the other conchoid varieties. Offsets varieties have 
been extensively applied in the field of computer aided geometric design (see 
[5],[3],[4]), while conchoids varieties appears in several of practical applications, 
namely the design of the construction of buildings, in astronomy [6], in electro-
magnetism research [20], optics, physics, mechanical engineering and biological 
engineering [7], in fluid mechanics [19], etc. 

The intuitive idea of these geometric constructions is the following. Let C be 
the field of complex numbers (in general, one can take any algebraically closed 
field of characteristic zero), and let C be an irreducible hypersurface in C n (say 
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n = 2 or n = 3, and hence C is a curve or a surface). Moreover, although it is 
not necessary for the development of the theory, in practice one considers that 
C is real (i.e. there exists at least one regular real point on C). The offset variety 
to C at distance d (d is a field element, in practice a non-zero real number), 
denoted by Od(C), is the envelope of the system of hyperspheres centered at the 
points of C with fixed radius d (see Fig.l, left); for a formal definition, see e.g. 
[1]. In particular, if C is unirational and V(t), with t = (ti,... ,tn), a rational 
parametrization of C, the offset to C is the Zariski closure of the set in Cn 

generated by the expression V(t) ±d AA(t) 
l|AA(t)|| where J\f(t) is the normal vector to 

C associated with V(t). 
The conchoid construction is also rather intuitive. Given C as above (base 

variety) and a fixed point A (focus), consider the line C joining A (in practice 
the focus is real) to a point P of C. Now we take the points Q of intersection 
of C with a hypersphere of radius d centered at P. The Zariski closure of the 
geometric locus of Q as P moves along C is called the conchoid variety of C 
from focus A at a distance d and denoted by £^(C) (see Fig.l right); for the 
geometric construction of the conchoid and, for a formal definition, see e.g. [15] 
and [10]. The Conchoid of Nicomedes and the Limagon of Pascal are the two 
classic examples of conchoids, and the best known. They appear when the base 
curve is a line or a circle, respectively. Similarly, if C is unirational and V(t) is a 
rational parametrization of C, then the conchoid is the Zariski closure of the set 
defined by the expression 

V(t)±d 
V(t) - A 
\V(t)-A\\ 
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Fig. 1. Left: Construction of the offset to the parabola, Right: Geometric construction 
of the conchoid 



These two operations are algebro-geometric, in the sense that they create 
new algebraic sets from the given input objects. There is an interesting relation 
between the offset and the conchoid operations. Indeed, there exists a rational 
bijective quadratic map which transforms a given hypersurface F and its offset 
Fd to a hypersurface G and its conchoidal Gd, and vice versa (see [11]). 

The main difficulty when applying these constructions is that they generate 
much more complicated objects than the initial ones. There is a clear explosion 
of the degree of the hypersurface, singularity structure and the density of the 
defining polynomials (see e.g. [2], [13], [15]). As a consequence, in practice, the 
implicit equations are untractable from the computational point of view. This is 
one of the reasons why the use of parametric representations of offsets and con­
choids are considered. Let us see an illustrating example. We consider the plane 
curve C defined by y4 = x5. Its offset has degree 12 and the polynomial defining 
it has 65 nonzero terms, and its infinity norm is 300781250. However, the offset 
can be parametrized by radicals (see [17], [18]) as ( t 4 , t 5 )± . 8

d
 6(—5t4,4t3) . 

On the other, the offset can be rationally parametrized as 

/ 1 (t2 - 1) ( I 6 t 8 - 3 2 t 6 + 625dt4 + 32t2 - 16) 

^625 t4 (t2 + 1) ' 

2 -16 t 1 2 + 64t10 - 80t8 + 3125dt6 + 80t4 - 6412 + 16\ 
3125 t5 (f + 1) ) ' 

The paper is structured as follows. In Section 1 we recall some of the ba­
sic definitions and main properties on offsets and conchoids of algebraic plane 
curves (see [13], [15]). We provide algorithms to analyze the rationality of the 
components of these new objects (see [1], [16]), and in the affirmative case, ra­
tional parametrizations are given. In Section 2 we present the creation of two 
packages in the computer algebra system Maple to analyze the rationality of 
offset and conchoids curves respectively, whose procedures are based on the 
above algorithms, as well as the corresponding help pages. Finally, in Section 3, 
we illustrate the performance of the package by presenting a brief atlas where the 
offset and conchoids of several algebraic plane curves are obtained, with their ra­
tionality analyzed. Furthermore, in case of genus zero, a rational parametrization 
is computed. We have not done an theoretical analysis of the complexity of the 
implemented algorithms but the practical performance of the implementation 
provides answers, in reasonable time for curves of degree less than 5. 

1 Parametrization Algorithms: Curve Case 

In this section we summarize the results on the rationality of the offsets and 
conchoids of curves, presented in [1], [16] respectively, by deriving an algorithm 
for parametrizing them. The treatment of surfaces can be found at [1], [12], [14] 
(offsets) [8], [9], [10] (conchoids). 

The Offset Rationality Problem 



The rationality of the components of the offsets is characterized by means of 
the existence of parametrizations of the curve whose normal vector has rational 
norm, and alternatively by means of the rationality of the components of an 
associated curve, that is usually simpler than the offset. As a consequence, one 
deduces that offsets to rational curves behave as follows: they are either reducible 
with two rational components (double rationality), or rational, or irreducible and 
not rational. 

For this purpose, we first introduce two concepts: Rational Pythagorean Hodo-
graph and curve of reparametrization. Let V(t) = (Pi(t), P2(t)) G C(t)2 be a ra­
tional parametrization of C. Then, V(t) is RPH (Rational Pythagorean Hodograph) 
ifits normal vector JV(t) = (N^t), N2(t)) satisfies that N1(t)

2+N2(t)
2 = m(tf , 

with m(t) G C(t). For short we will express this fact writing ||7V(t)|| G C(t). On 
the other hand, we define the reparametrizing curve of Od(C) associated with 
V(t) as the curve generated by the primitive part with respect to x2 of the nu­
merator of x\ P1 (x\) — P1 (x\) + 2x2P2(xi) , where Pi denotes the derivative of 
Pi. In the following, we denote by G®(C) the reparametrizing curve of Od(C) as­
sociated with V(t). Summarizing the results in [1], one can outline the following 
algorithm for offsets. 

Algorithm: offset parametrization 

— GIVEN: a proper rational parametrization V(t) of a plane curve C in K2 and 
dec. 

— DECIDE: whether the components of Od(C) are rational. 
— DETERMINE: (in the affirmative rational parametrization of each 

component. 

1. Compute the normal vector W(t) ofP(i). IF ||W(t)|| G K(£) THEN RETURN 
Od(C) has two rational components parametrized by V(t) ± Mn.!,,,Af(t). 

2. Determine G-p(C), and decide whether G-p(C) is rational. 
3. IF Gp(C) is not rational THEN RETURN no component of Od(C) is rational. 
4. Else compute a proper parametrization H(t) = (R(t),R(t)) of G-p(C) 

and RETURN that OdiC) is rational and that Q(t) = V(R(t)) + 
N,(pm,fpm2+r)^(R(t)) where W = (JVi, JV2), parametrizes Od(C). 

The Conchoid Rationality Problem 

In [16], it is proved that conchoids having all their components rational can only 
be generated by rational curves. Moreover, it is shown that reducible conchoids to 
rational curves have always their two components rational (double rationality). 
From these results, one deduces that the rationality of the conchoid component, 
to a rational curve, does depend on the base curve and on the focus but not 
on the distance. To approach the problem we use similar ideas to those for off­
sets introducing the notion of reparametrization curve as well as the notion of 
rdf parametrization. The rdf concept allows us to detect the double rationality 
while the reparametrization curve is a much simpler curve than the conchoid, 
directly computed from the input rational curve and the focus, and that behaves 



equivalently as the conchoid in terms of rationality. As a consequence of these 
theoretical results [16] provides an algorithm to solve the problem. The algo­
r i thm analyzes the rationality of all the components of the conchoid and, in the 
affirmative case, parametrizes them. The problem of detecting the focuses from 
where the conchoid is rational or with two rational components is, in general, 
open. 

We say tha t a rational parametrization V(t) = (Pi(£), P2W) G K( t ) 2 of C 
is at rational distance to the focus A = (a, 6) if (Pi(£) — a) 2 + (P2(t) — b)2 = 
m(t ) 2 , with m(t) G K(t ) . For short, we express this fact saying tha t V(t) is 
rdf or A-rdf if we need to specify the focus. On the other hand, we define the 
reparametrization curve of the conchoid fi^(C) associated to V(t), denoted by 
Q!p(C), as the primitive part with respect tox2 of the numerator of—2x2 (Pi (xi) — 
a) + ( x 2 - l ) ( P 2 ( x ! ) - 6 ) . 

Algorithm: conchoid parametrizat ion 

— GIVEN: a proper rational parametrization V(t) of a plane curve C in K2 , a 
focus A = (a, 6), and d e C . 

— D E C I D E : whether the components of the conchoid <£j(C) are rational. 
— D E T E R M I N E : (in the affirmative rational parametrization of each 

component. 

1. Compute GpiC). 
2. If QJJ{C) is reducible RETURN that <t^(C) is double rational and that 

•^M ~^~ ±\\v(t)-A\\ (^ffl ~~ A) parametrize the two components. 
3. Check whether the genus of QJJ is zero. If not, RETURN that (£d (C) is not 

rational. 
4. Compute a proper parametrization (</>i(£),</>2(£)) of QJJ and RETURN that 

C^(C) is rational and that V(4>i(t)) + ^imu dtt))-A\\ (^('/MO) — ^ ) para­
metrizes (tf(C). 

We can note tha t the rationality of the both constructions is not equivalent. 
For instance, if C is the parabola of equation j/2 = y\, tha t c a n be parametrized 
as ( t , t 2 ) , the offset at distance d is rational. However, the rationality of the 
conchoid of the parabola depends on the focus. 

2 Implementat ion of Conchoid and Offset Maple 
Packages and Help Pages 

In this section, we present the creation of two packages in the computer algebra 
system Maple, tha t we call Concho id and Offset. These packages compute the 
implicit equation, and analyze the rationality and the reducibility of conchoids 
and offset curves respectively, providing rational parametrizations in case of 
genus zero. In addition, it allows us to display plots. These packages consist in 
several procedures tha t are based on the above parametrization algorithms. 



In the following, we give a brief description of the procedures and we show one of 
the help pages for one of the Maple functions. The procedure codes and packages 
are available in 
h t t p : //www. e u i t t .upm. e s / u p l o a d e d / d o c s - p e r s o n a l e s / s e n d r a . p o n s _ j u a n a / 
o f f s e t s _ c o n c h o i d s / O f f s e t . z i p 

2 .1 P r o c e d u r e s of t h e C o n c h o i d P a c k a g e 

get I mpl Conch This procedure determines the implicit equation of the conchoid 
of an algebraic plane curve, given implicitely, at a fixed focus and a fixed distance. 
For this purpose, we use Grobner basis to solve the system of equations consisting 
on the circle centered at generic point of the initial curve C and radius d, the 
straight line from the focus A to the generic point of the initial curve C, and the 
initial curve C. 

getParamConch Firstly this procedure checks whether the conchoid of a ra­
tional curve is irreducible or it has two rational components. For this purpose, 
we analyze whether a proper rational parametrization of the initial curve is 
RDF. In affirmative case, the procedure outputs a message indicating reducibil-
ity (the conchoid has two rational components) and a rational parametrization 
for each component is displayed. Otherwise, the conchoid is irreducible and the 
reparametrization curve is computed in order to s tudy its rationality. In the 
affirmative case, it provides a rational parametrizat ion by means of a rational 
parametrizat ion of the reparametrizing curve and it outputs a message indicating 
irreducibility and rationality. 

plot I mpl Conch This procedure computes the conchoids curve using getlm-

plConch procedure, and then it plots both the initial curve and its conchoid 
within the coordinates axes interval \—a, a] x \—a, a]. 

2.2 P r o c e d u r e s of t h e Offset P a c k a g e 

ImplicitOFF This procedure determines the implicit equation of the offset of 
a rational algebraic plane curve, given parametrically, at a fixed distance. For 
this purpose, since the algebraic system has three variables and one parameter 
(namely the distance), instead of Grobner basis we simplify the computat ion by 
using resultants to solve the system of equations consisting on the circle centered 
at a generic point of the initial curve C and radius d, and the normal line at each 
point of C. 

OFFparametric This procedure analyzes the rationality of the offset of a ratio­
nal plane curve. For this purpose, first it decides whether the offset is irreducible 
or it has two rational components. In case of reducibility, the procedure outputs 



a rational parametrization for each component, using the RPH concept. Other­
wise, it checks whether the offset is rational or not. In the affirmative case, it 
provides a rational parametrization by means of a rational parametrization of 
the reparametrizing curve. 

OFFplot This procedure computes the offset curve at a generic distance, d, and 
then replaces d with fixed value, dist. Finally, it plots both the initial curve and 
its offset at a distance dist within the coordinates axes interval [—a, a] x [—a, a]. 

Once we have implemented the Offset/Conchoid procedure in Maple, we have 
created two packages containing them, called Conchoid and Offset, respectively. 

Theoretically, to compute the implicit equation of either the conchoid or the 
offset, we use the incidence varieties introduced in [1] and [15], respectively. 
In the definition of this incidence variety an equation, to exclude extraneous 
factors, is introduced such that the Zariski closure of the projection is exactly 
the offset/conchoid curve. Therefore, by the theorem of the closure, Grobner 
basis computation, and resultant when possible, provides the correct equation. In 
addition, one has to take into account that we are dealing with generic conchoids 
and generic offsets and therefore the specialization of the Grobner basis or the 
resultant may fail. Nevertheless, since we have only one parameter there are only 
finitely many specializations; In particular, d = 0 generates a bad specialization. 
Since d = 0 is not interesting from the geometric construction point of view we 
are excluding this case. In addition, we have created the help pages associated 
to the procedures. 

3 Atlas of Conchoid and Offset Curves 

In this section we illustrate the previous results applying the packages Offset 
and Conchoid. We analyze the rationality of the offset and the conchoid of sev­
eral classical rational curves, and in the case of rationality we compute rational 
parametrizations. We give a table summarizing the main details of the process 
for each geometric construction, such as the degree of the implicit equation, ra­
tional character and rational parametrization in case of genus zero. In case of 
Conchoids, the rationality depends on the focus, therefore in the table we study 
the rationality for different focus position, distinguishing if the focus is on the 
base curve or not. We don't include the implicit equation of the reparametriz­
ing curve because of space limitations. The implicit equations, plots and more 
details of the computation of these atlas are available by contacting with the 
corresponding author. 



Table 1. Offsets Curves 

Base Curve 
Offset 
Degree 

Rationality & Parametrization 

Circle 
xl+xj - 4 

Double Rational 
j_(d+r)2t .^(d±r)(t2-l) 
^ t2+l ' + P+l 

Parabola 
X2 — x\ 

Rational 
( t 2 - l ) ( - t 2 - 1 + 4 dat) t6-t4-t2+ 1 + 32 dt3 a 

4at(t2 + l) ' 16at2( t2 + l) 

Hyperbola 
2 2 

x l 'f2. 1 
16 9 

Irreducible and non rational 

Ellipse 
Irreducible and non rational 

Cardioid 
{x\ + 4x2 + 
x2

2f - 16{xf + 

xl) 

14 

Rational 
( - 9 + t 2 ) (tit6-117rit4 + 3456t3-1053rit2 + 729ri) 

(243t 2 +27t 4 +t 6 +729)( t 2 +9) ' 
18(r i t 6-16t 5-21ri t 4+864t 3-189ri t 2-1296t+729ri) t 

(243t2 + 27t4 + t6 + 729)(t2 + 9) 

Three-leaved Rose 
{xj + x\f + x i ( 3 x | - x\) 14 Irreducible and non rational 

Trisectrix of Maclau-
rin 
x\{x\ + xl) - {xl - 3x\) 

10 Irreducible and non rational 

Folium of Descartes 
xl + X% — 3X1X2 

14 Irreducible and non rational 

Tacnode 
2x\-3x\x2+xl-2xl+xi 

20 Irreducible and non rational 

Epitrochoid 
xi + 2x\xl-Uxl+x\ 
Mxf + 96xi - 63 

10 Irreducible and non rational 

Ramphoid Cusp 
4 , 2 2 o 2 2 , 

X1-\-X1X2—2x1X2—XlX2 + 

xl 

20 Irreducible and non rational 

Lemniscata oT 
Bernoulli 16 
( x ? + x i ) 2 - 4 ( x ? - x i ) 

Irreducible and non rational 



Table 2. Conchoids Curves 

Curve C Focus Curve F 
Focus Conch. A 

Conchoid 
P a r a m e t r i z a t i o n 

Circle 
A=F=(0,0) 

A=(-2,0) e C, 
A=(-4,0) £ C 

- 2 ( - l + t 2 ) ± ( l - t 2 ) 4t±2t 
l + *2 l + *2 D R 

3 t 4 - 1 2 t 2 + l 2t(-3+5f!) i p 
l + 2 t 2 + t 4 , l + 2 ( 2 + t 4 I « • 

N R 

P a r a b o l a 
A=F=(0, l /4) 

A eC,A=(0,0) 
A=(0,-2) £ C 

t± D R 1 + 4*2 , <• ="= l + 4 t 2 ^ 

2 t + 2 t 3 + l - 2 t 2 + t 4 2 t ( 2 t + 2 t 3 + l ' - 2 t 2 + t*) '\ -p 
( - l + t 2 ) ( l + t 2 ) , ( _ 1 + t ) 2 ( 1 + t ) 2 ( 1 + t 2 ) I « . 

N R 

H y p e r b o l a 
A=F=(5,0) 

A=(-4,0) e C 
A=(0,0) £ C 

- 2 ( 9 + t 2 ) _i_ 2 ( - t - 6 ) ( 2 t + 3 ) 
4 5 + 2 4 t + 5 t 2 > 3t 

f - 9 
2t ± 

3 ( t 2 - 9 ) D R 4 5 + 2 4 t + 5 t 2 -

( 4 5 t 6 + 1 2 9 t 4 + 3 1 1 t 2 + 2 7 ) 2 ( - 6 3 + 8 1 t 4 - 8 2 t 2 ) t \ p 

( l + t 2 ) ( - 9 + t 2 ) ( 9 t 2 - l ) ' ( l + t 2 ) ( - 9 + t 2 ) ( 9 t 2 - l ) ^ "• 

N R 

Ellipse 
A=F=(3,0) 
A=(0,4) e C 
A=(0,0) £ C 

5(f-l) , t 2 - 4 
2 i 1 ± (2 + 1 t 2 + 4 > t2 + l ± (2+4 

D R 
. ( l - r ) ( 1 0 0 t + 1 0 0 t 3 + 4 t * + 1 7 r + 4 ) 
<• ( 4 t 4 + 1 7 t 2 + 4 ) ( l + t 2 ) , 

2 ( - 5 8 t 4 + 8 t 6 - 5 8 t 2 + 8 - 4 t 5 - 1 7 t 3 - 4 t ) 
( 4 t 4 + 1 7 t 2 + 4 ) ( l + t 2 ) 

N R 
) R 

Cardioid 
A=(0,0) e C 
A=(-9,0) £ C 

- 1 0 2 4 t 3 

± (16*2+1)2 

N R 

-8t 
16*2 + 1 ! 

- 1 2 8 f i ( 1 6 t - i - l ) _|_ l - 1 6 t 2 ' 
(16*2+1)2 =>= 16(2 + 1 , D R 

2(t4-6t2+9)t2( t - l )( t+l) 4t3(t4-6t2+9) \ -p 
(t4+2t2+l)2 ' (t4+2t2 + l)2 I ± t 

N R 
-2(-5t 2+2t 4 + l) -4t(-5t 2+2t 4 + l)^ 

Three -
leaved Rose 

A=(0,0) e C 
A=(-2,0) £ C 

Trisectr ix of 
Mac laur in 

A=(0,0) e C 
A=(-4,0) £ C 

(t4 + 2t2 + l) ' (t4+2t2 + l ) ( t 2 - l ) 
N R 

R 

, ( - 6 t + 6 t b + t t i - 3 t 4 + 3 t 2 - l + 8 t 3 ) ( t - l ) ( t + l ) 
*• ( t 2 + l ) ( t 6 - 3 t 4 + 3 t 2 - l + 8 t 3 ) 

Folium of 
Descar tes 

A=(0,0) e C 
A=(-l , - l ) £ C 

(t2+i)(t 
2(-6t+6t5 + tb-3t*+3t^ 

+8t3) 
-l+8t3)t 

(t2 + l )( t6-3t4 + 3t 2- l+8t 3) 
N R 

) R 

Tacnode 
A=(0,0) e C 
A=(0,l) e C 

N R 
N R  

, - 7 t * + 2 8 8 t 2 + 2 5 6 _i_ 1 6 - t 2 

<• ( t 2 + 16) 2 ^ t 2 + 16> 

±fc§)DR 
Epi t rochoid A=(3,0) e C 

A=(0,0) £ C 
- 1 6 t ( 5 t - 1 6 ) 

((2 + 16)2 

N R 
R a m p h o i d 
Cusp 

A=(0,0) e C 
A=(-l,-l) £ C 

N R 
N R 

Lemnisca ta 
of Bernoul l i 

A=(-l , - l ) e C 
A=(-2,0) e C 

N R 
N R 

DR Double Rational, R Rational, NR Irreducible and Non Rational 



Fig. 2. Left: Parabola and the offset at d = 2. Right: Hyperbola and the offset at d = 1.5. 

Fig. 3. Left: Ellipse and the offset at d = 1. Right: Cardioid and the offset at d = 1. 

Fig. 4. Left: Three-leaved Rose and the offset at d = 1. Right: Trisectrix of Maclaurin 
and the offset at d = 1. 



Fig. 5. Left: Circle and the conchoid at A = (—2,0) and d = 1 (Limacon of Pascal). 
Right: Straight line and the conchoid at A = (0, 0) and d = 2 (Conchoid of Nicomedes). 

Fig. 6. Left: Conchoid of Sluze and the conchoid at A = (—2,0) and d = 1. Right: 
Folium of Descartes and the conchoid at A = (0, 0) and d = 2. 

Fig. 7. Left: Leniniscata of Bernoulli and the conchoid at A = (—2,0) and d = 1. 
Right: Parabola and the conchoid at A = (0, 1/4) and d = 1. 
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