8 research outputs found

    X-ray detection of structural orientation in human articular cartilage

    Get PDF
    AbstractObjective: To determine the feasibility of detecting the structural orientation in cartilage with Diffraction Enhanced X-Ray Imaging.Design: Human tali and femoral head specimens were Diffraction Enhanced X-Ray Imaged (DEI) at the SYRMEP beamline at Elettra at various energy levels to detect the architectural arrangement of collagen within cartilage. DEI utilizes a monochromatic and highly collimated beam, with an analyzer crystal that selectively weights out photons according to the angle they have been deviated with respect to the original direction. This provides images of very high contrast, and with the rejection of X-ray scatter.Results: DEI allowed the visualization of articular cartilage and a structural orientation, resembling arcades, within.Conclusion: Our diffraction enhanced images represent the first radiographic detection of the structural orientation in cartilage. Our data are in line with previous studies on the structural organization of joint cartilage. They confirm the model of a vaulting system of collagen fiber bundles interrupted by proteoglycan aggregates

    practicability of trabecular bone analysis

    No full text
    Die Osteoporose ist eine systemische Knochenstoffwechselerkrankung, welche aufgrund einer Minderung der Knochenfestigkeit mit einem deutlich erhöhten Risiko fĂŒr FragilitĂ€tsfrakturen verbunden ist. Da mit jeder bereits aufgetretenen FragilitĂ€tsfraktur das Risiko fĂŒr eine Folgefraktur um ein mehrfaches steigt, ist es daher von großer Wichtigkeit, noch vor dem ersten Frakturereignis die Personen zu identifizieren, die an einer Osteoporose erkrankt sind. Der radiologisch-diagnostische Ansatz liegt hierbei in der morphologischen Quantifizierung der Knochenfestigkeit. Derzeitiger diagnostischer Standard sind sogenannte densitometrische Verfahren, die ĂŒber eine indirekte Bestimmung des knöchernen Kalzium- oder Hydroxylapatitgehaltes die Knochenmineraldichte (=BMD aus dem englischen „bone mineral density“) bestimmen. Obwohl ein Großteil der Knochenfestigkeit (ca. 60-70%) von der BMD abhĂ€ngig ist, haben jedoch große epidemiologische Studien zeigen können, dass sich FragilitĂ€tsfrakturen allein durch densitometrische Messungen, wie z.B. die quantitative Computertomographie (QCT), nicht vorhersagen lassen. UrsĂ€chlich fĂŒr die Diskrepanz zwischen Osteodensitometrie und Frakturvorhersagekraft ist die Tatsache, dass fĂŒr die Beurteilung der Knochenfestigkeit neben der knöchernen Masse an sich u.a. auch die rĂ€umliche Verteilung dieser Masse relevant ist. Mit dem konzeptionellen Überbau der sogenannten KnochenqualitĂ€t wird daher all den knöchernen Eigenschaften und Einflussfaktoren Rechnung getragen, die neben der BMD die Festigkeit eines Knochens bedingen. Dazu zĂ€hlen u.a. die Geometrie eines Knochens, die knöcherne Umbaurate als auch die Makro- und Mikroarchitektur des trabekulĂ€ren und kortikalen Knochens, welche die knöchernen Einzelkompartimente darstellen. In Bezug auf eine bessere Frakturvorhersage hat sich insbesondere die Betrachtung der trabekulĂ€ren Mikroarchitektur und die mit ihr verbundene Strukturanalyse als wegweisend erwiesen. Etliche Studien konnten dabei belegen, dass ein erhöhtes Frakturrisiko mit signifikanten Störungen der trabekulĂ€ren Mikroarchitektur einhergeht. Trotz gleichbleibender BMD können schon geringe Alterationen im trabekulĂ€ren Netzwerk die Knochenfestigkeit beeintrĂ€chtigen. Die Mehrzahl der Studien, die sich mit der Osteoporose und der trabekulĂ€ren Strukturanalyse befasst haben, wurde aufgrund der geringen TrabekelgrĂ¶ĂŸe (80-200 ÎŒm) unter Laborbedingungen mit Mikro-Computertomographen (ÎŒCT) durchgefĂŒhrt. ÎŒCTs bilden die „wahre“ trabekulĂ€re Struktur bei einer rĂ€umlichen Auflösung von bis zu 1 ÎŒm ab, sind jedoch auf Messungen an explantierten Knochenproben beschrĂ€nkt. Eine Ausnahme sind jedoch die sogenannten HR-pQCT (aus dem englischen „high resolutional peripheral quantitative computed tomography) Systeme. Mittels HR-pQCT (Auflösung 41-246 ÎŒm) können an peripheren anatomischen Regionen, wie der distalen Tibia und dem distalen Radius, in-vivo Messungen des trabekulĂ€ren und kortikalen Knochens durchgefĂŒhrt werden, der Zugang zu diesen GerĂ€ten ist jedoch weltweit auf nur einzelne Forschungsinstitute begrenzt (Originalarbeit 5). Obwohl fĂŒr die Diagnostik der Osteoporose die Wichtigkeit der trabekulĂ€ren Strukturanalyse belegt ist, ist die entsprechende klinisch-radiologische Umsetzung und ihre Anwendbarkeit an weit zugĂ€nglichen GerĂ€ten in der Praxis nicht ausreichend geprĂŒft worden. Die in dieser Habilitationsschrift vereinten Originalarbeiten 1 bis 7 haben sich daher unter Anwendung jeweils klinisch praktikabler Untersuchungsbedingungen, mit der trabekulĂ€ren Strukturanalyse und der Vorhersagbarkeit der Knochenfestigkeit bzw. FrakturprĂ€valenz befasst. In den – durch die Elsbeth Bonhoff-Stiftung geförderten – Originalarbeiten 1, 2, 4 und 7 wurde evaluiert, wie gut sich die trabekulĂ€re Struktur in einem klinischen Setting abbilden lĂ€sst. Zu diesem Zweck hat unsere Arbeitsgruppe in Kooperation mit dem Institut fĂŒr Radiologie an der University at San Francisco (UCSF) ein experimentelles Studiendesign entwickelt, welches an 15 intakten GanzkörperprĂ€paraten und 20 intakten HandprĂ€paraten aus dem Institut fĂŒr Anatomie (CharitĂ© UniversitĂ€tsmedizin Berlin) durchgefĂŒhrt wurde. ZunĂ€chst wurden die (Ganz-)KörperprĂ€parate entsprechend klinischer Protokolle in der Gantry des Multidetektor-Computertomographen (MDCT) platziert und untersucht. Bei den untersuchten Körperregionen handelte es sich um die Lendenwirbelkörper 1 bis 3 (Originalarbeit 1), den rechten proximalen Femur (Originalarbeit 2), beide Calcanei (Originalarbeit 7) und um die Regionen des distalen Radius (Originalarbeit 4). Mittels MDCT wurden dann die BMD und trabekulĂ€re Struktur- und teilweise auch Texturparameter (errechnet aus der Verteilung der Grauwerte) abgleitet. Um die MDCT Strukturparameter mit der realen trabekulĂ€ren Struktur zu vergleichen, wurden aus den untersuchten Körperregionen die Knochen explantiert und mittels hochaufgelöster Referenzmethoden erneut gemessen. Es zeigte sich letztlich, dass mittels MDCT die trabekulĂ€re Struktur aufgrund großer Limitationen in der Auflösung nur sehr stark eingeschrĂ€nkt abzubilden ist. Mit dem angewandtem Studiendesign konnte unsere Arbeitsgruppe zeigen, dass mit simulierten klinischen Untersuchungsbedingungen einzig der Parameter BV/TV (=bone volume/total volume) mit durchweg hohen bis sehr hohen Korrelationen (r = 0,75-0,96) zu reproduzieren ist. Zu bedenken ist hierbei jedoch, das BV/TV im eigentlichen Sinne kein Strukturparameter, sondern eine Art Knochendichteparameter ist, der den Anteil des Knochenvolumens in Bezug zum Gesamtvolumen setzt. Auch wenn die strukturanalytischen AnsĂ€tze anscheinend nur fĂŒr BV/TV anwendbar sind, zeigten sich in Originalarbeit 2 beim Vergleich von Texturparametern mit den Strukturparameter Tb.Sp (=trabecular separation) und Tb.N (=trabecular number) sehr hohe Korrelationen (r = 0,83-0,86), so dass der Schluss gezogen werden kann, dass texturanalytische Verfahren geeigneter sind, um die trabekulĂ€re Struktur zu beschreiben. An der University of California at San Francisco wurden in kleineren Patientenstudien (Originalarbeit 5 und 6), alternativ zur MDCT, mittels Magnetresonanztomographie (MRT) und HR-pQCT trabekulĂ€re Strukturparameter ermittelt und in Kombination mit Parametern des kortikalen Knochens betrachtet. Es zeigten sich in beiden Studien inverse Wechselbeziehungen zwischen diesen beiden Knochenkompartimenten. ZusĂ€tzlich wiesen in der Originalarbeit 6 die trabekulĂ€ren Strukturparameter am distalen Radius hoch signifikante Korrelationen (r=0,59, p<0,0001) zur lokalen, mittels QCT gemessenen BMD auf. Perspektivisch ließe sich dies evtl. dazu nutzen, die mittels Osteodensitometrie erfolgenden Verlaufskontrollen in der Osteoporose- Therapie partiell durch MRT Verlaufskontrollen zu ersetzen. In Bezug auf die Differenzierung zwischen einer Fraktur-gefĂ€hrdeten Gruppe und einer Kontrollgruppe (Originalarbeit 5), erwies sich am distalen Radius die mittels HR-pQCT gemessene PorositĂ€t des kortikalen Knochens – im Vergleich zur trabekulĂ€ren Struktur – als wegweisender. So manifestierte sich in der Fraktur-gefĂ€hrdeten Gruppe eine um 151% erhöhte PorositĂ€t (p<0,05), wohingegen keine statistisch signifikanten VerĂ€nderungen in der trabekulĂ€ren Mikroarchitektur nachweisbar waren. In den Originalarbeiten 1 und 7 wurden die Knochenproben der Lendenwirbelkörper und Calcanei zusĂ€tzlich virtuellen und realen biomechanischen Tests unterzogen – durchgefĂŒhrt durch die UCSF und das AO Forschungsinstitut in Davos – und in Bezug gesetzt zur BMD und zu den trabekulĂ€ren Struktur- und Texturparametern. Es zeigte sich in beiden Arbeiten, dass die BMD als Einzelparameter entgegen der Ausgangshypothese der Parameter mit der höchsten prĂ€diktiven Kraft zur Beurteilung der Knochenfestigkeit war (R2 = 0,56 – 0,60). SĂ€mtliche Strukturparameter waren der BMD diesbezĂŒglich unterlegen. Die prĂ€diktive Kraft der BMD konnte sogar weiter gesteigert werden (R2 = 0,72 – 0,80), indem selbige mit Texturparametern kombiniert wurde. FĂŒr die Differenzierung zwischen Patienten mit Fraktur und denen ohne erwiesen sich auch in Originalarbeit 3 – eine Kooperation mit der UniversitĂ€t Hall in Tirol und der UniversitĂ€t Innsbruck – die Texturparameter und die BMD als geeignet. Es zeigte sich sogar, dass eine Vorhersage bzgl. des Frakturtyps bzw. bzgl. des Verlaufes der Frakturlinie im proximalen Femur möglich ist. Fazit ist demnach: Aus klinisch-radiologischer Sicht ist der trabekulĂ€re Knochen nur mit sehr starken EinschrĂ€nkungen darstellbar. Mit Ausnahme der HR-pQCT, zu der es aber nur limitierten Zugang ĂŒber wenige Forschungsinstitute gibt, versagen strukturanalytische AnsĂ€tze in der Praxis. Trotz alledem kann die Diagnostik der Osteoporose verbessert werden, in dem die etablierte BMD-Messung mit trabekulĂ€ren Texturparametern ergĂ€nzt und kombiniert wird.Osteoporosis is a systemic disorder of bone metabolism associated with a very high risk of fragility fractures due to loss of bone stability. Each osteoporotic fracture multiplies the risk of suffering another fracture. Therefore, it is very important to identify individuals at risk before the first fracture occurs. The radiologist’s approach to the diagnosis of osteoporosis is to morphologically quantify bone stability. Currently, the standard diagnostic tests are based on densitometry, which means that they determine bone mineral density (BMD) by indirectly measuring calcium or hydroxyapatide content of bone. While bone stability is mainly determined by BMD (approx. 60-70%), large epidemiologic studies have shown that densitometric methods such as quantitative computed tomography (QCT) alone do not adequately predict the risk of osteoporotic fractures. The inadequacy of osteodensitometry in estimating the fracture risk is attributable to the fact that bone stability is not determined by bone mass alone. Other factors are involved such as how the bone mass is distributed. The concept of bone quality aims at integrating all properties of bone and all factors that determine bone stability besides BMD. Among others, these properties include bone geometry, the bone conversion rate, and the macro- and microarchitecture of trabecular and cortical bone – which constitute the two bone compartments. Assessment of trabecular microarchitecture by structural analysis have proven pivotal for a better prediction of fracture risk. Numerous studies have shown that an increased fracture risk is associated with significant alterations in trabecular microarchitecture. With BMD being the same, already slight changes in the trabecular network can impair bone stability. Most studies of trabecular structure in osteoporosis were performed as laboratory experiments using micro-computed tomography (ÎŒCT) due to the small trabecular size (80-200 ÎŒm). ÎŒCT depicts “true” trabecular structure with a spatial resolution of up to 1 ÎŒm; however, it can only be performed on ex-vivo bone specimens. An exception are so-called high-resolution peripheral quantitative computed tomography systems (HR-pQCT), which have a resolution of 41-246 ÎŒm and allow in vivo measurement of trabecular and cortical bone in peripheral anatomy such as the distal tibia and the distal radius. Only a few research centers worldwide have access to this equipment (Original article 5). While the importance of trabecular structure analysis for the diagnosis of osteoporosis is well established, only little research has been done on the translation into radiological practice and the assessment of trabecular structures using widely available techniques. This habilitation thesis compiles seven original articles (1 to 7) that investigated trabecular structure analysis and its predictive value for bone stability or fracture prevalence under conditions that can be used in clinical routine. Four of the studies compiled here (original articles 1, 2, 4, and 7) were supported by a grant from the Elsbeth Bonhoff Foundation. These four studies investigated how trabecular structure can be assessed under clinical conditions. For this purpose, our study group, in cooperation with the Department of Radiology of the University of California, San Francisco (UCSF), developed an experimental study design involving the use of 15 complete bodies and 20 intact hands from the Institute for Anatomy (CharitĂ© - UniversitĂ€tsmedizin Berlin). In a first step, the bodies and hands were placed in the gantry of a multidetector computed tomography system (MDCT) and examined using clinical protocols. The skeletal regions examined were lumbar vertebrae 1 to 3 (original article 1), the right proximal femur (original article 2), the two calcanei (original article 7), and the regions of the distal radius (original article 4). In these studies, MDCT was used to determine BMD and trabecular structure parameters as well as, in some instances, textural parameters (calculated from the distribution of gray-scale values). For comparison of MDCT-derived structural parameters with the true trabecular structure, the bones from the target regions examined by CT were explanted and assessed with high-resolution reference techniques. Overall, the results show that MDCT is limited by poor resolution in depicting trabecular structure. With the study design used, our group found that, under simulated clinical conditions, BV/TV (bone volume/total volume) was the only parameter that could be consistently reproduced with high to very high correlations (r = 0.75-0.96). However, it must be noted that BV/TV is not a proper structural parameter but rather a type of bone density parameter, which expresses bone volume in relation to total volume. Although it appears that the structural analysis approaches are only valid for BV/TV, original article 2 demonstrates very high correlations for the comparison of textural parameters with two structural parameters - Tb.Sp (trabecular separation) and Tb.N (=trabecular number) (r = 0.83-0.86). These findings suggest that textural analysis may be more suitable for assessing trabecular structure. Smaller patient studies conducted at the University of California, San Francisco (original articles 5 and 6) determined trabecular structure parameters using magnetic resonance imaging (MRI) and HR-pQCT, as alternatives to MDCT, and analyzed these in conjunction with parameters of cortical bone. Both studies revealed inverse relationships between these two bone compartments. In addition, original article 6 showed trabecular structural parameters determined in the distal radius to highly significantly correlate (r=0.59, p<0.0001) with local BMD determined by QCT. This opens up the perspective that MRI follow-up might partially replace follow-up using osteodensitometry in patients on osteoporosis treatment. With regard to the differentiation of a group of patients at risk of fracture and a control group (original article 5), the porosity of cortical bone measured in the distal radius by means of HR-pQCT turned out to be more promising compared with trabecular structure. In this study, porosity was 151% higher in the group at risk of fracture (p<0.05), whereas no statistically significant difference in trabecular microarchitecture was revealed. In original articles 1 and 7, bone specimens from the lumbar vertebrae and calcanei were additionally subjected to virtual and real biomechanical tests – conducted by UCSF and the AO Research Institute in Davos – and the results were related to BMD and to parameters of trabecular bone and texture. In both studies, the initial hypothesis was refuted and BMD turned out to be the parameter with the highest predictive power for assessing bone stability when used alone (R2 = 0.56 – 0.60). All structural parameters were inferior to BMD in this respect. The predictive power of BMD could even be enhanced further (R2 = 0.72 – 0.80) by combining it with textural parameters. Textural parameters and BMD were also found to be suitable for separating patients with and without fractures in original article 3, which presents a study conducted in cooperation with Hall University in Tirol and Innsbruck University. This study even showed that the fracture type or the course of the fracture line in the proximal femur could be predicted. In conclusion, the studies outlined indicate that, from the clinical radiologist’s perspective, assessment of the trabecular bone by imaging is of little value. Except for HR-pQCT, which, however, is only available at a few research centers, bone assessment using structural analysis does not stand the test of practice. Nevertheless, the diagnostic evaluation of osteoporosis can be improved by supplementing and combining established BMD measurement with trabecular texture parameters

    Bone structure determined by HR-MDCT does not correlate with micro-CT of lumbar vertebral biopsies: a prospective cross-sectional human in vivo study

    Get PDF
    Background: Osteoporosis is characterized by a deterioration of bone structure and quantity that leads to an increased risk of fractures. The primary diagnostic tool for the assessment of the bone quality is currently the dual-energy X-ray absorptiometry (DXA), which however only measures bone quantity. High-resolution multidetector computed tomography (HR-MDCT) offers an alternative approach to assess bone structure, but still lacks evidence for its validity in vivo. The objective of this study was to assess the validity of HR-MDCT for the evaluation of bone architecture in the lumbar spine. Methods: We conducted a prospective cross-sectional study to compare the results of preoperative lumbar HR-MDCT scans with those from microcomputed tomography (ÎŒCT) analysis of transpedicular vertebral body biopsies. For this purpose, we included patients undergoing spinal surgery in our orthopedic department. Each patient underwent preoperative HR-MDCT scanning (L1-L4). Intraoperatively, transpedicular biopsies were obtained from intact vertebrae. Micro-CT analysis of these biopsies was used as a reference method to assess the actual bone architecture. HR-MDCT results were statistically analyzed regarding the correlation with results from ÎŒCT. Results: Thirty-four patients with a mean age of 69.09 years (± 10.07) were included in the study. There was no significant correlation for any of the parameters (bone volume/total volume, trabecular separation, trabecular thickness) between ÎŒCT and HR-MDCT (bone volume/total volume: r = − 0.026 and p = 0.872; trabecular thickness: r = 0.074 and r = 6.42; and trabecular separation: r = − 0.18 and p = 0.254). Conclusion: To our knowledge, this is the first study comparing in vivo HR-MDCT with ÎŒCT analysis of vertebral biopsies in human patients. Our findings suggest that lumbar HR-MDCT is not valid for the in vivo evaluation of bone architecture in the lumbar spine. New diagnostic tools for the evaluation of osteoporosis and preoperative orthopedic planning are urgently needed

    Bone mineral density assessment using iterative reconstruction compared with quantitative computed tomography as the standard of reference

    Get PDF
    Abstract This study examines the influence of iterative reconstruction on bone mineral density (BMD) measurement by comparison with standard quantitative computed tomography (QCT; reference) and two other protocols based on filtered back projection. Ten human cadaver specimens of the lumbar spine with a hydroxyapatite calibration phantom underneath, were scanned with 4 protocols: 1. standard QCT, 2. volume scan with FBP, 3. helical scan with FBP, and 4. helical scan with IR (Adaptive Iterative Dose Reduction 3D (AIDR3D)). Radiation doses were recorded as CT dose index (CTDIvol) and BMD, signal-to-noise and contrast-to-noise ratio were calculated. Mean hydroxyapatite concentration (HOA) did not differ significantly between protocols, ranging from 98.58 ± 31.09 mg cm3 (protocol 4) to 100.47 ± 30.82 mg cm3 (protocol 2). Paired sample correlations of HOA values for protocol 4 and protocols 1, 2 and 3 were nearly perfect with coefficients of 0.980, 0.979 and 0.982, respectively (p < 0.004). CTDIvol were 7.50, 5.00, 6.82 (±2.03) and 1.72 (±0.50) mGy for protocols 1, 2, 3 and 4 respectively. Objective image quality was highest for protocol 4. The use of IR for BMD assessment significantly lowers radiation exposure compared to standard QCT and protocols with FBP while not degrading BMD measurement

    Prediction of bone strength by ÎŒCT and MDCT-based finite-element-models: How much spatial resolution is needed?

    No full text
    OBJECTIVES: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. MATERIALS AND METHODS: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15-20mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 ÎŒm) and whole-body multi-row-detector computed tomography (MDCT, 250 ÎŒm × 250 ÎŒm × 500 ÎŒm). The resolution of all datasets was lowered in eight steps to ~ 2,000 ÎŒm × 2000 ÎŒm × 500 ÎŒm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. RESULTS: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (Δeff<0.005) could be calculated down to 250 ÎŒm × 250 ÎŒm × 500 ÎŒm. Biomechanically determined failure load showed significant correlations with all FEM, up to r=0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. CONCLUSION: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in spatial resolutions, available in vivo (250 ÎŒm × 250 ÎŒm × 500 ÎŒm), that thus seemed to be the optimal compromise between high accuracy and low computation time
    corecore