3,099 research outputs found

    Measurement and Analysis of Terminal Shock Oscillation and Buffet Forcing Functions on a Launch Vehicle Payload Fairing

    Get PDF
    The buffet loads on a launch vehicle payload shroud can be impacted by the unsteadiness associated with a terminal shock at high subsonic speeds. At these conditions, flow accelerates to supersonic speeds on the nose of the payload fairing and is terminated by a normal shock on the cylindrical section downstream of the nose cone/cylinder shoulder. The location of the terminal shock and associated separated boundary layer is affected by the freestream Mach number, Reynolds number, and the pitch/yaw of the launch vehicle. Furthermore, even when the freestream conditions and vehicle attitude are constant, this terminal shock oscillates on the surface of the vehicle. The time-varying surface pressure associated with the terminal shock results in unsteady aerodynamic loads that may interact with vehicle structural dynamic modes and the guidance and control of the vehicle. Buffet testing of a 3-percent scale rigid buffet model of a launch vehicle cargo configuration with a tangent-ogive payload shroud was conducted in 2012 and in 2016. Initial buffet forcing functions (BFFs) utilized a coarse pressure sensor distribution on the vehicle surface in which a single longitudinal station with eight sensors observed the terminal shock environment at Mach 0.90. An examination of these circumferential pressures reveal large impulse-like pressure fluctuations and an asymmetry in pressure when the vehicle is at a nonzeroangle of attack that result in high BFFs. Revisions to the shock integration region were made based on computational fluid dynamics and shadowgraph video of shock motion to better represent the BFFs and reduce the high loads resulting from this environment. To more clearly understand this terminal shock environment, a second wind tunnel test was conducted with a dense distribution of 256 sensors at the terminal shock location. These sensor arrays presents a unique opportunity to observe the unsteady terminal shock environment and to characterize the impact of various integration schemes on the BFFs. This paper presents a summary of the development of BFFs for this terminal shock and a detailed analyses of shock region pressure coefficients, coherence, BFFs, shock location time histories, and power spectral density to help guide development of BFFs for other launch vehicle test and analysis programs

    The Development and Hover Test Application of a Projection Moire Interferometry Blade Displacement Measurement System

    Get PDF
    Projection moir interferometry (PMI) was employed to measure blade deflections during a hover test of a generic model-scale rotor in the NASA Langley 14x22 subsonic wind tunnel s hover facility. PMI was one of several optical measurement techniques tasked to acquire deflection and flow visualization data for a rotor at several distinct heights above a ground plane. Two of the main objectives of this test were to demonstrate that multiple optical measurement techniques can be used simultaneously to acquire data and to identify and address deficiencies in the techniques. Several PMI-specific technical challenges needed to be addressed during the test and in post-processing of the data. These challenges included developing an efficient and accurate calibration method for an extremely large (65 inch) height range; automating the analysis of the large amount of data acquired during the test; and developing a method to determinate the absolute displacement of rotor blades without a required anchor point measurement. The results indicate that the use of a single-camera/single-projector approach for the large height range reduced the accuracy of the PMI system compared to PMI systems designed for smaller height ranges. The lack of the anchor point measurement (due to a technical issue with one of the other measurement techniques) limited the ability of the PMI system to correctly measure blade displacements to only one of the three rotor heights tested. The new calibration technique reduced the data required by 80 percent while new post-processing algorithms successfully automated the process of locating rotor blades in images, determining the blade quarter chord location, and calculating the blade root and blade tip heights above the ground plane

    Analysis of a Multi-Flap Control System for a Swashplateless Rotor

    Get PDF
    An analytical study was conducted examining the feasibility of a swashplateless rotor controlled through two trailing edge flaps (TEF), where the cyclic and collective controls were provided by separate TEFs. This analysis included a parametric study examining the impact of various design parameters on TEF deflections. Blade pitch bearing stiffness; blade pitch index; and flap chord, span, location, and control function of the inboard and outboard flaps were systematically varied on a utility-class rotorcraft trimmed in steady level flight. Gradient-based optimizations minimizing flap deflections were performed to identify single- and two-TEF swashplateless rotor designs. Steady, forward and turning flight analyses suggest that a two-TEF swashplateless rotor where the outboard flap provides cyclic control and inboard flap provides collective control can reduce TEF deflection requirements without a significant impact on power, compared to a single-TEF swashplateless rotor design

    Comprehensive Analysis Modeling of Small-Scale UAS Rotors

    Get PDF
    Multicopter unmanned aircraft systems (UAS), or drones, have continued their explosive growth in recent years. With this growth comes demand for increased performance as the limits of existing technologies are reached. In order to better design multicopter UAS aircraft, better performance prediction tools are needed. This paper presents the results of a study aimed at using the rotorcraft comprehensive analysis code CAMRAD II to model a multicopter UAS rotor in hover. Parametric studies were performed to determine the level of fidelity needed in the analysis code inputs to achieve results that match test data. Overall, the results show that CAMRAD II is well suited to model small-scale UAS rotors in hover. This paper presents the results of the parametric studies as well as recommendations for the application of comprehensive analysis codes to multicopter UAS rotors

    The Effect of Tip Geometry on Active-Twist Rotor Response

    Get PDF
    A parametric examination of the effect of tip geometry on active-twist rotor system response is conducted. Tip geometry parameters considered include sweep, taper, anhedral, nonlinear twist, and the associated radial initiation location for each of these variables. A detailed study of the individual effect of each parameter on active-twist response is presented, and an assessment offered of the effect of combining multiple tip shape parameters. Tip sweep is shown to have the greatest affect on active-twist response, significantly decreasing the response available. Tip taper and anhedral are shown to increase moderately the active-twist response, while nonlinear twist is shown to have a minimal effect. A candidate tip shape that provides active-twist response equivalent to or greater than a rectangular planform blade is presented

    Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    Get PDF
    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight

    Ares Launch Vehicle Transonic Buffet Testing and Analysis Techniques

    Get PDF
    It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. In order to obtain these forcing functions, the accepted method is to perform wind-tunnel testing of a rigid model instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. The buffet wind-tunnel test program for the Ares Crew Launch Vehicle employed 3.5 percent scale rigid models of the Ares I and Ares I-X launch vehicles instrumented with 256 unsteady pressure transducers each. These models were tested at transonic conditions at the Transonic Dynamics Tunnel at NASA Langley Research Center. The ultimate deliverable of the Ares buffet test program are buffet forcing functions (BFFs) derived from integrating the measured fluctuating pressures on the rigid wind-tunnel models. These BFFs are then used as input to a multi-mode structural analysis to determine the vehicle response to buffet and the resulting buffet loads and accelerations. This paper discusses the development of the Ares I and I-X rigid buffet model test programs from the standpoint of model design, instrumentation system design, test implementation, data analysis techniques to yield final products, and presents normalized sectional buffet forcing function root-mean-squared levels

    Analysis of a Transonic Alternating Flow Phenomenon Observed During Ares Crew Launch Vehicle Wind Tunnel Tests

    Get PDF
    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition from separated to attached flow about the cone-cylinder junction with increasing Mach number. For locally transonic conditions at this junction, the flow randomly fluctuates back and forth between a subsonic separated flow and a supersonic attached flow. These fluctuations produce a square-wave like pattern in the pressure time histories which, upon integration result in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a wind-tunnel-test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet loa

    Assessment of Buffet Forcing Function Development Process Using Unsteady Pressure Sensitive Paint

    Get PDF
    A wind tunnel test was conducted at the Ames Unitary Plan Wind Tunnel to characterize the transonic buffet environment of a generic launch vehicle forebody. The test examined a highly instrumented version of the Coe and Nute Model 11 test article first tested in the 1960s. One of the measurement techniques used during this test was unsteady pressure sensitive paint (uPSP) developed at the Arnold Engineering Development Complex. This optical measurement technique measured fluctuating pressures at over 300,000 locations on the surface of the model. The high spatial density of these measurements provided an opportunity to examine in depth the assumptions underpinning the development of buffet forcing functions (BFFs) used in the development of the Space Launch System vehicle. The comparison of discrete-measurement-based BFFs to BFFs developed by continuous surface pressure integration indicates that the current BFF development approach under predicts low frequency content of the BFFs while over predicting high frequency content. Coherence-based adjustments employed to reduce over prediction in the surface integration of discrete pressure measurements contribute to the inaccuracy of the BFFs and their implementation should be reevaluated

    Effect of Surface Pressure Integration Methodology on Launch Vehicle Buffet Forcing Functions

    Get PDF
    The 2014 test of the Space Launch System (SLS) Rigid Buffet Model conducted at the NASA Langley Transonic Dynamics Tunnel employed an extremely high number of unsteady pressure transducers. The high channel count provided an opportunity to examine the effect of transducer placement on the resulting buffet forcing functions (BFFs). Rings of transducers on the forward half of the model were employed to simulate a single-body vehicle. The impact of transducer density, circumferential distribution, and loss of a single transducer on the resulting BFFs were examined. Rings of transducers on the aft half of the SLS model were employed to examine the effect of transducer density and circumferential distribution on BFFs for a multi-body configuration. Transducer placement considerations with respect to model size, facility infrastructure, and data acquisition system capabilities, which affect the integration process, are also discussed
    • …
    corecore