478 research outputs found
Recommended from our members
ISSLS PRIZE IN BIOENGINEERING SCIENCE 2019: biomechanical changes in dynamic sagittal balance and lower limb compensatory strategies following realignment surgery in adult spinal deformity patients.
Study designA longitudinal cohort study.ObjectiveTo define a set of objective biomechanical metrics that are representative of adult spinal deformity (ASD) post-surgical outcomes and that may forecast post-surgical mechanical complications. Current outcomes for ASD surgical planning and post-surgical assessment are limited to static radiographic alignment and patient-reported questionnaires. Little is known about the compensatory biomechanical strategies for stabilizing sagittal balance during functional movements in ASD patients.MethodsWe collected in-clinic motion data from 15 ASD patients and 10 controls during an unassisted sit-to-stand (STS) functional maneuver. Joint motions were measured using noninvasive 3D depth mapping sensor technology. Mathematical methods were used to attain high-fidelity joint-position tracking for biomechanical modeling. This approach provided reliable measurements for biomechanical behaviors at the spine, hip, and knee. These included peak sagittal vertical axis (SVA) over the course of the STS, as well as forces and muscular moments at various joints. We compared changes in dynamic sagittal balance (DSB) metrics between pre- and post-surgery and then separately compared pre- and post-surgical data to controls.ResultsStandard radiographic and patient-reported outcomes significantly improved following realignment surgery. From the DSB biomechanical metrics, peak SVA and biomechanical loads and muscular forces on the lower lumbar spine significantly reduced following surgery (- 19 to - 30%, all p < 0.05). In addition, as SVA improved, hip moments decreased (- 28 to - 65%, all p < 0.05) and knee moments increased (+ 7 to + 28%, p < 0.05), indicating changes in lower limb compensatory strategies. After surgery, DSB data approached values from the controls, with some post-surgical metrics becoming statistically equivalent to controls.ConclusionsLongitudinal changes in DSB following successful multi-level spinal realignment indicate reduced forces on the lower lumbar spine along with altered lower limb dynamics matching that of controls. Inadequate improvement in DSB may indicate increased risk of post-surgical mechanical failure. These slides can be retrieved under Electronic Supplementary Material
Pengaruh Kecerdasan Emosional dan Motivasi Belajar terhadao Prestasi Belajar IPA Siswa Kelas VIII SMPN 4 Ruteng-Lengor
This research aims: (1) to find out the influence of emotional intelligence on the learning achievement of students of class VIII SMPN 4 Ruteng, (2) to find out the influence of learning motivation on the learning achievement of students of class VIII SMPN 4 Ruteng, (3) to know the influence of emotional intelligence and learning motivation on the achievement of students of class VIII SMPN 4 Ruteng-Lengor school year 2020/2021.The type of research used is quantitative research with ex post facto research design. The population in this study were all students of class VIII SMPN 4 Ruteng-Lengor totaling 100 people and the research sample amounting to 80 people obtained using simple random sampling technique. Data collection techniques using questionnaires and documentation. Questionnaire to measure emotional intelligence and learning motivation, while documenting student report cards for the even semester of the 2020/2021 academic year for learning achievement. Data analysis used normality test, linearity test, multicollinearity test, heteroscedasticity test, simple regression analysis and multiple regression analysis. The results of the study show that: first, there is a significant influence between emotional intelligence on science learning achievement for class VIII students of SMPN 4 Ruteng-Lengor for the academic year 2020/2021. This is evidenced by a simple regression test obtained the magnitude of 0.00 <0.05. Second, there is a significant influence between learning motivation on science learning achievement for class VIII students of SMPN 4 Ruteng-Lengor for the 2020/2021 academic year. This is evidenced by a simple regression test obtained the magnitude of 0.03 <0.05. Third, there is a significant influence between emotional intelligence and learning motivation on the science learning achievement of class VIII students of SMPN 4 Ruteng-Lengor for the 2020/2021 academic year. This is evidenced by the multiple regression test obtained the magnitude of 0.00 <0.05
Human Sclera Maintains Common Characteristics with Cartilage throughout Evolution
BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia
Curvature fluctuations and Lyapunov exponent at Melting
We calculate the maximal Lyapunov exponent in constant-energy molecular
dynamics simulations at the melting transition for finite clusters of 6 to 13
particles (model rare-gas and metallic systems) as well as for bulk rare-gas
solid. For clusters, the Lyapunov exponent generally varies linearly with the
total energy, but the slope changes sharply at the melting transition. In the
bulk system, melting corresponds to a jump in the Lyapunov exponent, and this
corresponds to a singularity in the variance of the curvature of the potential
energy surface. In these systems there are two mechanisms of chaos -- local
instability and parametric instability. We calculate the contribution of the
parametric instability towards the chaoticity of these systems using a recently
proposed formalism. The contribution of parametric instability is a continuous
function of energy in small clusters but not in the bulk where the melting
corresponds to a decrease in this quantity. This implies that the melting in
small clusters does not lead to enhanced local instability.Comment: Revtex with 7 PS figures. To appear in Phys Rev
Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells
Biologists rely on morphology, function and specific markers to define the differentiation status of cells. Transcript profiling has expanded the repertoire of these markers by providing the snapshot of cellular status that reflects the activity of all genes. However, such data have been used only to assess relative similarities and differences of these cells. Here we show that principal component analysis of global gene expression profiles map cells in multidimensional transcript profile space and the positions of differentiating cells progress in a stepwise manner along trajectories starting from undifferentiated embryonic stem (ES) cells located in the apex. We present three ‘cell lineage trajectories’, which represent the differentiation of ES cells into the first three lineages in mammalian development: primitive endoderm, trophoblast and primitive ectoderm/neural ectoderm. The positions of the cells along these trajectories seem to reflect the developmental potency of cells and can be used as a scale for the potential of cells. Indeed, we show that embryonic germ cells and induced pluripotent cells are mapped near the origin of the trajectories, whereas mouse embryo fibroblast and fibroblast cell lines are mapped near the far end of the trajectories. We suggest that this method can be used as the non-operational semi-quantitative definition of cell differentiation status and developmental potency. Furthermore, the global expression profiles of cell lineages provide a framework for the future study of in vitro and in vivo cell differentiation
Optomechanical response with nanometer resolution in the self-mixing signal of a terahertz quantum cascade laser
Owing to their intrinsic stability against optical feedback (OF), quantum cascade lasers (QCLs) represent a uniquely versatile source to further improve self-mixing interferometry at mid-infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision, the deeply subwavelength (<λ/6000) mechanical vibrations of a suspended Si3N4 membrane used as the external element of a THz QCL feedback interferometer. Besides representing an extension of the applicability of vibrometric characterization at THz frequencies, our system can be exploited for the realization of optomechanical applications, such as dynamical switching between different OF regimes and a still-lacking THz master-slave configuration
Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks
Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism
- …