283 research outputs found

    АЛГОРИТМ ОПРЕДЕЛЕНИЯ СТАДИИ ЖИЗНЕННОГО ЦИКЛА ОРГАНИЗАЦИИ

    Get PDF
    Problem of the definition of a current stage of the lifecycle of an organization in practice is considered in the article. The purpose of this research is a development of the algorithm of stage definition of the organization’s lifecycle. The existing approaches to the stage definition of the lifecycle of the organization are considered. As a result of the research the optimal algorithm for stage definition of the organization’s lifecycle was developed.В данной статье рассматривается проблема определения на практике текущей стадии жизненного цикла организации. Цель данного исследования - разработка алгоритма определения стадии жизненного цикла организации. Рассмотрены существующие подходы к определению стадии жизненного цикла организации. В результате проведения исследования был разработан оптимальный алгоритм определения стадии жизненного цикла организации

    The influence of weight and gender on intestinal bacterial community of wild largemouth bronze gudgeon (Coreius guichenoti, 1874)

    Get PDF
    © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Largemouth bronze gudgeon (Coreius guichenoti) is of economic importance in China, distributed in upstream regions of the Yangtze River in China. But it has recently dramatically declined and is close to elimination. However, there is little knowing about the character of its intestinal microbiota. This study was conducted to elucidate the intestinal microbiota of wild largemouth bronze gudgeon with different body weight and gender. Results: Thirty wild largemouth bronze gudgeon were measured for body length and body weight, and identified for male and female according to gonadal development, and thereafter the intestinal microbiota’s were assessed by MiSeq sequencing of 16S rRNA genes. The results revealed that phyla Proteobacteria and Tenericutes were dominant in wild largemouth bronze gudgeon intestine independent of the body weight. Shannon’s and Inverse Simpson’s diversity indexes were significant (P < 0.05) different between male and female fish. The phylum profile in the intestine of male fish revealed that phylum Proteobacteria was dominant, in contrast to female fish where five phyla Tenericutes, Proteobacteria, Firmicutes, Fusobacteria and Spirochaetes were dominant. The genus profile revealed that genera Shewanella and Unclassified bacteria were dominant in male fish, while genus Mycoplasma was dominant in female fish. Conclusions: Our results revealed that the intestinal microbial community of wild largemouth bronze gudgeon was dominated by the phyla Proteobacteria and Tenericutes regardless of the different body weight, but the communities are significant different between male and female fish. These results provide a theoretical basis to understand the biological mechanisms relevant to the protection of the endangered fish species

    Altering Host Resistance to Infections through Microbial Transplantation

    Get PDF
    Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in “host” susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter “host” resistance, and a novel means to alter enteric infection and to study host-pathogen interactions

    Salmonella Transiently Reside in Luminal Neutrophils in the Inflamed Gut

    Get PDF
    Enteric pathogens need to grow efficiently in the gut lumen in order to cause disease and ensure transmission. The interior of the gut forms a complex environment comprising the mucosal surface area and the inner gut lumen with epithelial cell debris and food particles. Recruitment of neutrophils to the intestinal lumen is a hallmark of non-typhoidal Salmonella enterica infections in humans. Here, we analyzed the interaction of gut luminal neutrophils with S. enterica serovar Typhimurium (S. Tm) in a mouse colitis model.Upon S. Tm(wt) infection, neutrophils transmigrate across the mucosa into the intestinal lumen. We detected a majority of pathogens associated with luminal neutrophils 20 hours after infection. Neutrophils are viable and actively engulf S. Tm, as demonstrated by live microscopy. Using S. Tm mutant strains defective in tissue invasion we show that pathogens are mostly taken up in the gut lumen at the epithelial barrier by luminal neutrophils. In these luminal neutrophils, S. Tm induces expression of genes typically required for its intracellular lifestyle such as siderophore production iroBCDE and the Salmonella pathogenicity island 2 encoded type three secretion system (TTSS-2). This shows that S. Tm at least transiently survives and responds to engulfment by gut luminal neutrophils. Gentamicin protection experiments suggest that the life-span of luminal neutrophils is limited and that S. Tm is subsequently released into the gut lumen. This "fast cycling" through the intracellular compartment of gut luminal neutrophils would explain the high fraction of TTSS-2 and iroBCDE expressing intra- and extracellular bacteria in the lumen of the infected gut. In conclusion, live neutrophils recruited during acute S. Tm colitis engulf pathogens in the gut lumen and may thus actively engage in shaping the environment of pathogens and commensals in the inflamed gut

    Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae

    Get PDF
    The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-β-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry
    corecore