65 research outputs found

    Tuning the Electronic and Magnetic Properties of Nitrogen-Functionalized Few-Layered Graphene Nanoflakes

    Get PDF
    In this work, we report on the modification of electronic and magnetic properties of few layered graphene (FLG) nanoflakes via nitrogen functionalisation carried out using radio frequency (rf-PECVD) and electron cyclotron resonance (ECR) plasma processes. Even though the rf-PECVD N2 treatment leads to higher N-doping levels in the FLGs (4.06 at%) as compared to the ECR process (2.18 at.%), the ferromagnetic behaviour of ECR FLG(118.62 x 10⁻⁴ emu/gm) was significantly higher than the rf-PECVD (0.39 x 10⁻⁴ emu/gm) and pristine graphene (3.47 x 10⁻⁴ emu/gm). While both plasma processes introduce electron donating N-atoms in the graphene structure, distinct dominant nitrogen bonding configurations (pyridinic, pyrrolic) were observed for each FLG type. While, the ECR plasma introduces more sp2 type nitrogen moieties, the rf-PECVD process led to the formation of sp3 coordinated nitrogen functionalities, as confirmed through Raman measurements. The samples further characterised using X-ray absorption near edge spectroscopy (XANES) and X-ray, ultraviolet photoelectron spectroscopies revealed an increased electronic density of states and a significantly higher concentration of pyrrolic groups in the rf-PECVD samples. Due to the formation of reactive edge structures and pyridinic nitrogen moieties, the ECR functionalised FLGs expressed highest saturation magnetisation behaviour with the lowest field hysteretic features. In comparison, the rf-PECVD samples, displayed the lowest saturation magnetisation owing to the disappearance of magnetic edge states and formation of stable non-radical type defects in the pyrrole type structures. Our experimental results thus provide new evidence to control the magnetic and electronic properties of few layered graphene nanoflakes via control of the plasma-processing route

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure

    Magnetic properties of microwave-plasma (thermal) chemical vapour deposited Co-filled (Fe-filled) multiwall carbon nanotubes: comparative study for magnetic device applications

    Get PDF
    'Co-filled' and 'Fe-filled' multiwall carbon nanotubes (MWCNTs) were grown using microwave-plasma chemical vapour deposition (MPCVD) and thermal chemical vapour deposition (TCVD) methods respectively, and their structural and magnetic properties were studied for magnetic device applications. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show the average tube length approximate to 80-500 mu with outer (inner) diameter approximate to 20-50 (approximate to 10-20) nm for MWCNTs prepared by both methods. The diffraction peaks of both x-ray diffraction patterns show the interlayer distance, d(002) approximate to 3.36 , which is comparable to the graphite structure (d(002) = 3.35 ). The graphitic crystallite sizes (L-a) of MPCVD (TCVD) synthesized MWCNTs are approximate to 24.78 nm (approximate to 22.13 nm) as obtained from the intensity ratio of (I-D/I-G) D-peak, the disordered structure of graphite and G-peak, the C-C bond in graphitic structure of Raman spectra. The magnetization of 'Fe-filled' TCVD grown MWCNTs is much higher than 'Co-filled' MPCVD grown MWCNTs due to the formation of higher content of Fe-C and/or Fe-oxides in the MWCNT structures. The higher magnetic coercivity approximate to 2900 Oe and formation of isolated single-domain Fenanoparticles in 'Fe-filled' TCVD grown MWCNTs, as found from SEM / TEM micrographs, makes the ferromagnetic MWCNTs a promising material for the high-density magnetic recording media

    Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes

    Get PDF
    [[abstract]]The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt–C and Pt–N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]GB

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Preparation and Study of Cu2o Thin Films Deposited by the Dip Technique

    Get PDF
    corecore