15 research outputs found

    Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    Get PDF
    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars

    Irradiation neutronique du graphite a basse temperature cas du reacteur G1

    No full text
    National audienceDans le cœur des réacteurs de type Uranium Naturel Graphite Gaz (UNGG), du graphite était utilisé en tant que modérateur et réflecteur de neutrons. Ce matériau irradié durant le fonctionnement de ces réacteurs constituera une part importante des déchets nucléaires après les opérations de démantèlement. Ils contiennent notamment plusieurs radionucléides « dimensionnants » pour la gestion à long terme de ces déchets dont le 3H, le 14C et le 36Cl. Les objectifs des études de caractérisation des graphites nucléaires irradiés sont principalement de comprendre et de quantifier les évolutions du graphite après le passage en réacteur en fonction des paramètres de fonctionnement. Ces données sont particulièrement utiles à des études de modélisation de l'irradiation neutronique du graphite. Par ailleurs, ces études peuvent également aider à la compréhension des phénomènes de migration en condition de stockage des radionucléides actuellement présents dans les déchets de graphite. Le réacteur G1 du Commissariat à l'Energie Atomique (CEA) de Marcoule fût le premier réacteur de la filière UNGG. Construit en 1955, ce dernier a été exploité entre janvier 1956 et septembre 1968. Une particularité de ce réacteur était que le caloporteur utilisé était de l'air à température ambiante. Celui-ci était injecté à partir d'une fente médiane à l'empilement graphite du réacteur. La température de fonctionnement y était donc moins élevée (20 - 230°C) que dans les autres réacteurs UNGG. Par ailleurs, dix-huit opérations de recuit ont été réalisées pour dissiper l'énergie Wigner accumulée dans le graphite au cours de la vie du réacteur. De par ses conditions particulières de fonctionnement (basse température, recuits hors irradiation), il est intéressant d'étudier l'impact de l'irradiation neutronique sur le graphite nucléaire dans ce réacteur. Ainsi, les évolutions de structure et de nanostructure ont été étudiées par microspectrométrie Raman et Microscopie Electronique à Transmission (MET). En termes de résultat, (1) les échantillons prélevés dans le réacteur G1 sont relativement très impactés aux échelles étudiées par l’irradiation neutronique notamment en raison de la basse température de fonctionnement du réacteur et (2) la distribution des défauts d’irradiation n'est pas identique à ce qui a été observé sur les échantillons des réacteurs précédemment étudiés [1]. La température d’irradiation étant le principal changement, quelques interprétations seront proposées quant à la contribution de ce paramètre sur les évolutions de l'organisation multi-échelle du graphite lors du passage en réacteur. [1]J. Pageot et al., Carbon 105 2016, 77-89

    Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko

    No full text
    We report on the detection and characterization of more than 6300 polygons on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, using images acquired by the OSIRIS camera onboard Rosetta between August 2014 and March 2015. They are found in consolidated terrains and grouped in localized networks. They are present at all latitudes (from North to South) and longitudes (head, neck, and body), sometimes on pit walls or following lineaments. About 1.5% of the observed surface is covered by polygons. Polygons have an homogeneous size across the nucleus, with 90% of them in the size range 1 – 5 m and a mean size of 3.0 ± 1.4 m. They show different morphologies, depending on the width and depth of their trough. They are found in networks with 3- or 4-crack intersection nodes. The polygons observed on 67P are consistent with thermal contraction crack polygons formed by the diurnal or seasonal temperature variations in a hard (MPa) and consolidated sintered layer of water ice, located a few centimeters below the surface. Our thermal analysis shows an evolution of thermal contraction crack polygons according to the local thermal environment, with more evolved polygons (i.e. deeper and larger troughs) where the temperature and the diurnal and seasonal temperature range are the highest. Thermal contraction crack polygons are young surface morphologies that probably formed after the injection of 67P in the inner solar system, typically 100,000 years ago, and could be as young as a few orbital periods, following the decreasing of its perihelion distance in 1959 from 2.7 to 1.3 a.u. Meter scale thermal contraction crack polygons should be common features on the nucleus of Jupiter family comets

    Early bacterial identification among intubated patients with COVID-19 or influenza pneumonia: A european multicenter comparative clinical trial

    No full text
    Rationale: Early empirical antimicrobial treatment is frequently prescribed to critically ill patients with coronavirus disease (COVID-19) based on Surviving Sepsis Campaign guidelines. Objectives: We aimed to determine the prevalence of early bacterial identification in intubated patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia, as compared with influenza pneumonia, and to characterize its microbiology and impact on outcomes. Methods: A multicenter retrospective European cohort was performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation > 48 hours were eligible if they had SARS-CoV-2 or influenza pneumonia at ICU admission. Bacterial identification was defined by a positive bacterial culture within 48 hours after intubation in endotracheal aspirates, BAL, blood cultures, or a positive pneumococcal or legionella urinary antigen test. Measurements and Main Results: A total of 1,050 patients were included (568 in SARS-CoV-2 and 482 in influenza groups). The prevalence of bacterial identification was significantly lower in patients with SARS-CoV-2 pneumonia compared with patients with influenza pneumonia (9.7 vs. 33.6%; unadjusted odds ratio, 0.21; 95% confidence interval [CI], 0.15-0.30; adjusted odds ratio, 0.23; 95% CI, 0.16-0.33; P,0.0001). Gram-positive cocci were responsible for 58% and 72% of coinfection in patients with SARS-CoV-2 and influenza pneumonia, respectively. Bacterial identification was associated with increased adjusted hazard ratio for 28-day mortality in patients with SARS-CoV-2 pneumonia (1.57; 95% CI, 1.01-2.44; P =0.043). However, no significant difference was found in the heterogeneity of outcomes related to bacterial identification between the two study groups, suggesting that the impact of coinfection on mortality was not different between patients with SARS-CoV-2 and influenza. Conclusions: Bacterial identification within 48 hours after intubation is significantly less frequent in patients with SARSCoV-2 pneumonia than patients with influenza pneumonia. Copyright © 2021 by the American Thoracic Societ
    corecore