11 research outputs found

    Achievable agricultural soil carbon sequestration across Europe from country-specific estimates

    Get PDF
    Publication history: Accepted - 9 September 2021; Published online - 20 September 2021.The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The ‘4 per 1000’ (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4‰ per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries' SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level.This study has been funded and supported by the Horizon 2020 European Joint Programme SOIL (EJP-SOIL), grant agreement: 862695; Funding source: H2020-SFS-2018-2020/H2020-SFS-2019-1

    Achievable agricultural soil carbon sequestration across Europe from country-specific estimates

    Get PDF
    The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The ‘4 per 1000’ (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4‰ per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries' SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level.publishedVersio

    Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements

    No full text
    Laser scanning point clouds of forest stands were acquired in southwest Germany in 2019 and 2020 from different platforms: an aircraft, an uncrewed aerial vehicle (UAV) and a ground-based tripod. The UAV-borne and airborne laser scanning campaigns cover twelve forest plots of approximately 1 ha. The plots are located in mixed central European forests close to Bretten and Karlsruhe, in the federal state of Baden-WĂŒrttemberg, Germany. Terrestrial laser scanning was performed in selected locations within the twelve forest plots. Airborne and terrestrial laser scanning point clouds were acquired under leaf-on conditions, UAV-borne laser scans were acquired both under leaf-on and later under leaf-off conditions. In addition to the laser scanning campaigns, forest inventory tree properties (species, height, diameter at breast height, crown base height, crown diameter) were measured in-situ during summer 2019 in six of the twelve 1-ha plots. Single tree point clouds were extracted from the different laser scanning datasets and matched to the field measurements. For each tree entry, point clouds, tree species, position, and field-measured and point cloud-derived tree metrics are provided. For 249 trees, point clouds from all three platforms are available. The tree models form the basis of a single tree database covering a range of species typical for central European forests which is currently being established in the framework of the SYSSIFOSS project

    Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements

    No full text
    Laser scanning point clouds of forest stands were acquired in southwest Germany in 2019 and 2020 from different platforms: an aircraft, an uncrewed aerial vehicle (UAV) and a ground-based tripod. The UAV-borne and airborne laser scanning campaigns cover twelve forest plots of approximately 1 ha. The plots are located in mixed central European forests close to Bretten and Karlsruhe, in the federal state of Baden-WĂŒrttemberg, Germany. Terrestrial laser scanning was performed in selected locations within the twelve forest plots. Airborne and terrestrial laser scanning point clouds were acquired under leaf-on conditions, UAV-borne laser scans were acquired both under leaf-on and later under leaf-off conditions. In addition to the laser scanning campaigns, forest inventory tree properties (species, height, diameter at breast height, crown base height, crown diameter) were measured in-situ during summer 2019 in six of the twelve 1-ha plots. Single tree point clouds were extracted from the different laser scanning datasets and matched to the field measurements. For each tree entry, point clouds, tree species, position, and field-measured and point cloud-derived tree metrics are provided. For 249 trees, point clouds from all three platforms are available. The tree models form the basis of a single tree database covering a range of species typical for central European forests which is currently being established in the framework of the SYSSIFOSS project

    Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells

    No full text
    The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity
    corecore