191 research outputs found

    Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies

    Get PDF
    Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses

    Forkhead Transcription Factors (FoxOs) Promote Apoptosis of Insulin-Resistant Macrophages During Cholesterol-Induced Endoplasmic Reticulum Stress

    Get PDF
    OBJECTIVE—Endoplasmic reticulum stress increases macrophage apoptosis, contributing to the complications of atherosclerosis. Insulin-resistant macrophages are more susceptible to endoplasmic reticulum stress–associated apoptosis probably contributing to macrophage death and necrotic core formation in atherosclerotic plaques in type 2 diabetes. However, the molecular mechanisms of increased apoptosis in insulin-resistant macrophages remain unclear

    Prefacing unexplored archives from Central Andean surface-to-bedrock ice cores through a multifaceted investigation of regional firn and ice core glaciochemistry.

    Get PDF
    Shallow firn cores, in addition to a near-basal ice core, were recovered in 2018 from the Quelccaya ice cap (5470 m a.s.l) in the Cordillera Vilcanota, Peru, and in 2017 from the Nevado Illimani glacier (6350 m a.s.l) in the Cordillera Real, Bolivia. The two sites are ~450 km apart. Despite meltwater percolation resulting from warming, particle-based trace element records (e.g. Fe, Mg, K) in the Quelccaya and Illimani shallow cores retain well-preserved signals. The firn core chronologies, established independently by annual layer counting, show a convincing overlap indicating the two records contain comparable signals and therefore capture similar regional scale climatology. Trace element records at a ~1?4 cm resolution provide past records of anthropogenic emissions, dust sources, volcanic emissions, evaporite salts and marine-sourced air masses. Using novel ultra-high-resolution (120 ?m) laser technology, we identify annual layer thicknesses ranging from 0.3 to 0.8 cm in a section of 2000-year-old radiocarbon-dated near-basal ice which compared to the previous annual layer estimates suggests that Quelccaya ice cores drilled to bedrock may be older than previously suggested by depth-age models. With the information collected from this study in combination with past studies, we emphasize the importance of collecting new surface-to-bedrock ice cores from at least the Quelccaya ice cap, in particular, due to its projected disappearance as soon as the 2050s

    MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis

    Get PDF
    Virtually all of the elements of Mycobacterium tuberculosis (Mtb) pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6′-dimycolate (TDM/cord factor). TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88)-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs), implying involvement of toll-like receptors (TLRs). However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO), a class A scavenger receptor, is utilized preferentially to “tether” TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-κB)-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA), which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-κB signaling to occur. Consistent with these observations, macrophages from MARCO−/− or MARCO−/−SRA−/− mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2) and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow–derived) may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO−/− mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding receptors for TDM, explain the differential response to TDM of various macrophage populations, which differ in their expression of the scavenger receptors, and identify MARCO as a novel component required for TLR signaling

    Effect of severe versus moderate energy restriction on physical activity among postmenopausal female adults with obesity: a pre-specified secondary analysis of the TEMPO Diet randomized controlled Trial

    Get PDF
    BackgroundAn under-explored strategy for increasing physical activity is the dietary treatment of obesity, but empirical evidence is lacking.ObjectivesTo compare the effects of weight loss via severe versus moderate energy restriction on physical activity over 36 months.Methods101 postmenopausal female adults (45–65 years, 30–40 kg/m2, ResultsCompared to the moderate group, the severe group exhibited greater mean levels of: total volume of physical activity; duration of moderate-to-vigorous-intensity physical activity (MVPA); duration of light-intensity physical activity; and step counts, as well as lower mean duration of sedentary time. All these differences (except step counts) were apparent at 6 months (e.g., 1006 [95% confidence interval 564, 1449] MET-minutes per week for total volume of physical activity), and some were also apparent at 4 and/or 12 months. There were no differences between groups in the two other outcomes investigated (self-efficacy to regulate exercise; and proportion of participants meeting the World Health Organization's 2020 Physical Activity Guidelines for MVPA). When the analyses were adjusted for weight at each time point, the differences between groups were either attenuated or abolished.ConclusionsAmong female adults with obesity, including a dietary component to reduce excess body weight—notably one involving severe energy restriction—could potentially enhance the effectiveness of physical activity interventions

    C16 ceramide is crucial for triacylglycerol-induced apoptosis in macrophages

    Get PDF
    Triacylglycerol (TG) accumulation caused by adipose triglyceride lipase (ATGL) deficiency or very low-density lipoprotein (VLDL) loading of wild-type (Wt) macrophages results in mitochondrial-mediated apoptosis. This phenotype is correlated to depletion of Ca2+ from the endoplasmic reticulum (ER), an event known to induce the unfolded protein response (UPR). Here, we show that ER stress in TG-rich macrophages activates the UPR, resulting in increased abundance of the chaperone GRP78/BiP, the induction of pancreatic ER kinase-like ER kinase, phosphorylation and activation of eukaryotic translation initiation factor 2A, the translocation of activating transcription factor (ATF)4 and ATF6 to the nucleus and the induction of the cell death executor CCAAT/enhancer-binding protein homologous protein. C16:0 ceramide concentrations were increased in Atgl–/– and VLDL-loaded Wt macrophages. Overexpression of ceramide synthases was sufficient to induce mitochondrial apoptosis in Wt macrophages. In accordance, inhibition of ceramide synthases in Atgl–/– macrophages by fumonisin B1 (FB1) resulted in specific inhibition of C16:0 ceramide, whereas intracellular TG concentrations remained high. Although the UPR was still activated in Atgl–/– macrophages, FB1 treatment rescued Atgl–/– macrophages from mitochondrial dysfunction and programmed cell death. We conclude that C16:0 ceramide elicits apoptosis in Atgl–/– macrophages by activation of the mitochondrial apoptosis pathway

    Scavenger Receptor CD36 Expression Contributes to Adipose Tissue Inflammation and Cell Death in Diet-Induced Obesity

    Get PDF
    The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death.Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO) mice and wild type (WT) mice fed a high fat diet (60% kcal fat) for 16 weeks and the inflammatory response was studied in primary adipocytes and macrophages isolated from CD36 KO and WT mice.Compared to WT mice, CD36 KO mice fed a high fat diet exhibited reduced adiposity and adipose tissue inflammation, with decreased adipocyte cell death, pro-inflammatory cytokine expression and macrophage and T-cell accumulation. In primary cell culture, the absence of CD36 expression in macrophages decreased pro-inflammatory cytokine, pro-apoptotic and ER stress gene expression in response to lipopolysaccharide (LPS). Likewise, CD36 deficiency in primary adipocytes reduced pro-inflammatory cytokine and chemokine secretion in response to LPS. Primary macrophage and adipocyte co-culture experiments showed that these cell types act synergistically in their inflammatory response to LPS and that CD36 modulates such synergistic effects.CD36 enhances adipose tissue inflammation and cell death in diet-induced obesity through its expression in both macrophages and adipocytes

    Loss of protein kinase C delta alters mammary gland development and apoptosis

    Get PDF
    As apoptotic pathways are commonly deregulated in breast cancer, exploring how mammary gland cell death is regulated is critical for understanding human disease. We show that primary mammary epithelial cells from protein kinase C delta (PKCδ) −/− mice have a suppressed response to apoptotic agents in vitro. In the mammary gland in vivo, apoptosis is critical for ductal morphogenesis during puberty and involution following lactation. We have explored mammary gland development in the PKCδ −/− mouse during these two critical windows. Branching morphogenesis was altered in 4- to 6-week-old PKCδ −/− mice as indicated by reduced ductal branching; however, apoptosis and proliferation in the terminal end buds was unaltered. Conversely, activation of caspase-3 during involution was delayed in PKCδ −/− mice, but involution proceeded normally. The thymus also undergoes apoptosis in response to physiological signals. A dramatic suppression of caspase-3 activation was observed in the thymus of PKCδ −/− mice treated with irradiation, but not mice treated with dexamethasone, suggesting that there are both target- and tissue-dependent differences in the execution of apoptotic pathways in vivo. These findings highlight a role for PKCδ in both apoptotic and nonapoptotic processes in the mammary gland and underscore the redundancy of apoptotic pathways in vivo

    Humanin, a Cytoprotective Peptide, Is Expressed in Carotid Artherosclerotic Plaques in Humans

    Get PDF
    The mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques.Plaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9.The study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque

    An Accessory to the ‘Trinity’: SR-As Are Essential Pathogen Sensors of Extracellular dsRNA, Mediating Entry and Leading to Subsequent Type I IFN Responses

    Get PDF
    Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (ds)RNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN) responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As) are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNβ. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG) induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as ‘carriers’, facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions
    corecore