23 research outputs found

    Genomic insights into anthropozoonotic tuberculosis in captive sun bears (Helarctos malayanus) and an Asiatic black bear (Ursus thibetanus) in Cambodia

    Get PDF
    Contact between humans and wildlife presents a risk for both zoonotic and anthropozoonotic disease transmission. In this study we report the detection of human strains of Mycobacterium tuberculosis in sun bears and an Asiatic black bear in a wildlife rescue centre in Cambodia, confirming for the first time the susceptibility of these bear species to tuberculosis when in close contact with humans. After genotyping revealed two different strains of M. tuberculosis from cases occurring between 2009 and 2019, 100 isolates from 30 sun bear cases, a single Asiatic black bear case, and a human case were subjected to whole genome sequencing. We combined single nucleotide polymorphism analysis and exploration of mixed base calls with epidemiological data to indicate the evolution of each outbreak. Our results confirmed two concurrent yet separate tuberculosis outbreaks and established a likely transmission route in one outbreak where the human case acted as an intermediatory between bear cases. In both outbreaks, we observed high rates of transmission and progression to active disease, suggesting that sun bears are highly susceptible to tuberculosis if exposed under these conditions. Overall, our findings highlight the risk of bi-directional transmission of tuberculosis between humans and captive bears in high human tuberculosis burden regions, with implied considerations for veterinary and public health. We also demonstrate the use of standard genomic approaches to better understand disease outbreaks in captive wildlife settings and to inform control and prevention measures

    Aetiology of acute meningoencephalitis in Cambodian children, 2010–2013

    Get PDF
    Acute meningoencephalitis (AME) is associated with considerable morbidity and mortality in children in developing countries. Clinical specimens were collected from children presenting with AME at two Cambodian paediatric hospitals to determine the major aetiologies associated with AME in the country. Cerebrospinal fluid (CSF) and blood samples were screened by molecular and cell culture methods for a range of pathogens previously associated with AME in the region. CSF and serum (acute and convalescent) were screened for antibodies to arboviruses such as Japanese encephalitis virus (JEV), dengue virus (DENV), and chikungunya virus (CHIKV). From July 2010 through December 2013, 1160 children (one month to 15 years of age) presenting with AME to two major paediatric hospitals were enroled into the study. Pathogens associated with AME were identified using molecular diagnostics, cell culture and serology. According to a diagnostic algorithm, a confirmed or highly probable aetiologic agent was detected in 35.0% (n=406) of AME cases, with a further 9.2% (total: 44.2%, n=513) aetiologies defined as suspected. JEV (24.4%, n=283) was the most commonly identified pathogen followed by Orientia tsutsugamushi (4.7%, n=55), DENV (4.6%, n=53), enteroviruses (3.5%, n=41), CHIKV (2.0%, n=23) and Streptococcus pneumoniae (1.6%, n=19). The majority of aetiologies identified for paediatric AME in Cambodia were vaccine preventable and/or treatable with appropriate antimicrobials

    A first assessment of the genetic diversity of Mycobacterium tuberculosis complex in Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cambodia is among the 22 high-burden TB countries, and has one of the highest rates of TB in South-East Asia. This study aimed to describe the genetic diversity among clinical <it>Mycobacterium tuberculosis </it>complex (MTC) isolates collected in Cambodia and to relate these findings to genetic diversity data from neighboring countries.</p> <p>Methods</p> <p>We characterized by 24 VNTR loci genotyping and spoligotyping 105 <it>Mycobacterium tuberculosis </it>clinical isolates collected between 2007 and 2008 in the region of Phnom-Penh, Cambodia, enriched in multidrug-resistant (MDR) isolates (n = 33).</p> <p>Results</p> <p>Classical spoligotyping confirmed that the East-African Indian (EAI) lineage is highly prevalent in this area (60%-68% respectively in whole sample and among non-MDR isolates). Beijing lineage is also largely represented (30% in whole sample, 21% among non-MDR isolates, OR = 4.51, CI<sub>95% </sub>[1.77, 11.51]) whereas CAS lineage was absent. The 24 loci MIRU-VNTR typing scheme distinguished 90 patterns with only 13 multi-isolates clusters covering 28 isolates. The clustering of EAI strains could be achieved with only 8 VNTR combined with spoligotyping, which could serve as a performing, easy and cheap genotyping standard for this family. Extended spoligotyping suggested relatedness of some unclassified "T1 ancestors" or "Manu" isolates with modern strains and provided finer resolution.</p> <p>Conclusions</p> <p>The genetic diversity of MTC in Cambodia is driven by the EAI and the Beijing families. We validate the usefulness of the extended spoligotyping format in combination with 8 VNTR for EAI isolates in this region.</p

    Evaluation of Loopamp Assay for the Diagnosis of Pulmonary Tuberculosis in Cambodia

    No full text
    International audienceThe Loopampℱ MTBC kit (TB-LAMP) is recommended by WHO for Mycobacterium tuberculosis complex detection in low-income countries with a still low drug-resistant tuberculosis (TB) rate. This study is aimed at testing its feasibility in Cambodia on sputa collected from presumptive tuberculosis patients. 499 samples were tested at a smear microscopy center and 200 at a central-level mycobacteriology laboratory. Using mycobacterial cultures as reference, TB-LAMP results were compared with those of LED fluorescent microscopy (LED-FM) and Xpert¼ MTB/RIF. At the microscopy center, TB-LAMP sensitivity was higher than that of LED-FM (81.5% [95% CI, 74.5-87.6] versus 69.4% [95% CI, 62.2-76.6]), but lower than that of the Xpert assay (95.5% [95% CI 92.3-98.8]). At the central-level laboratory, TB-LAMP sensitivity (92.8% [95% CI, 87.6-97.9]) was comparable to that of Xpert (90.7% [95% CI, 85.0-96.5]) using stored sample. No significant difference in terms of specificity between TB-LAMP and Xpert assays was observed in both study sites. In conclusion, our data demonstrate that TB-LAMP could be implemented at microscopy centers in Cambodia to detect TB patients. In addition, TB-LAMP can be a better choice to replace smear microscopy for rapid TB diagnosis of new presumptive TB patients, in settings with relative low prevalence of drug-resistant TB and difficulties to implement Xpert assay

    Whole-genome sequencing confirms that Burkholderia pseudomallei multilocus sequence types common to both Cambodia and Australia are due to homoplasy

    Get PDF
    Whole-genome sequencing of the four isolates used in this study was supported by Wellcome Trust grant 098051, awarded to the Wellcome Trust Sanger Institute. This work was also supported by project grants from the Australian National Health and Medical Research Council and the Wellcome Trust. S.J.P. receives funding from the NIHR Cambridge Biomedical Research Centre.Burkholderia pseudomallei isolates with shared multilocus sequence types (STs) have not been isolated from different continents. We identified two STs shared between Australia and Cambodia. Whole-genome analysis revealed substantial diversity within STs, correctly identified the Asian or Australian origin, and confirmed that these shared STs were due to homoplasy.Publisher PDFPeer reviewe
    corecore