553 research outputs found
Association study of rs1801282 PPARG gene polymorphism and immune cells and cytokine levels in a Spanish pregnant women cohort and their offspring
Background: Peroxisome proliferator activated receptor gamma (PPARG ) belongs to the nuclear receptor superfamily
functioning as transcription factors to regulate cellular differentiation, development and metabolism. Moreover, it
has been implicated in the regulation of lipid metabolism, as well as the maturation of monocytes/macrophages and
the control of inflammatory reactions. The aim of this study was to evaluate the relationship between the Pro12Ala
(rs1808212) PPARG gene polymorphism on immune molecular and cellular components in mothers and their offspring
participating in the PREOBE study.
Methods: DNA from maternal venous blood samples at 24, 34 and 40 gestational weeks, plus cord blood samples
was extracted. Pro12Ala PPARG polymorphism genotyping was performed, and immune system markers were analyzed
by flow cytometry.
Results: Study findings revealed no effect of rs1808212 PPARG genotypes on innate immune parameters in mothers
and their offspring; however, CD4 + /CD8 + ratio were decreased at 24 and 34 weeks in pregnant women carrying the
CG (Pro12Ala) rs1808212 polymorphism, (p = 0,012 and p = 0,030; respectively). Only CD19 levels in peripheral blood
were significantly higher at delivery in pregnant women carrying the CC (Pro12Pro) genotype (p ≤ 0.001). Moreover,
there were statistically significant differences in leukocytes and neutrophils maternal levels at 34 weeks of gestation,
being lower in carriers of Pro12Ala genotype (p = 0.028 and p = 0.031, respectively).
Conclusions: Results suggest that Pro12Ala PPARG polymorphism may have an effect on some cell and immune
parameters in pregnant women during pregnancy and at time of delivery. However, newborn innate immune system
does not seems to be influenced by PPARG Pro12Ala polymorphism in cord blood.Andalusian Ministry of Innovation and Science, Junta de Andalucía, Excellence Project
P06-CTS-02341Spanish Ministry of Economy and Competitiveness
BFU2012-40254-C03-01Abbott Laboratories, Granada, Spai
The avoidance of G-CSF and the addition of prophylactic corticosteroids after autologous stem cell transplantation for multiple myeloma patients appeal for the at-home setting to reduce readmission for neutropenic fever
Autologous stem cell transplantation (ASCT) remains the standard of care for young multiple myeloma (MM) patients; indeed, at-home ASCT has been positioned as an appropriate therapeutic strategy. However, despite the use of prophylactic antibiotics, neutropenic fever (NF) and hospital readmissions continue to pose as the most important limitations in the outpatient setting. It is possible that the febrile episodes may have a non-infectious etiology, and engraftment syndrome could play a more significant role. The aim of this study was to analyze the impact of both G-CSF withdrawal and the addition of primary prophylaxis with corticosteroids after ASCT. Between January 2002 and August 2018, 111 MM patients conditioned with melphalan were managed at-home beginning +1 day after ASCT. Three groups were established: Group A (n = 33) received standard G-CSF post-ASCT; group B (n = 32) avoided G-CSF post-ASCT; group C (n = 46) avoided G-CSF yet added corticosteroid prophylaxis post-ASCT. The incidence of NF among the groups was reduced (64%, 44%, and 24%; P2 (OR 6.1; P = 0.002) and G-CSF avoidance plus corticosteroids (OR 0.1; P<0.001); and for hospital readmission: age �60 years (OR 14.6; P = 0.04) and G-CSF avoidance plus corticosteroids (OR 0.07; P = 0.05. G-CSF avoidance and corticosteroid prophylaxis post ASCT minimize the incidence of NF in MM patients undergoing at-home ASCT. This approach should be explored in a prospective randomized clinical trial
Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age – A Follow Up from the PREOBE Cohort
The study was registered at www.ClinicalTrials.gov, identifier:NCT01634464).Background:
Brain development in fetal life and early infancy is critical to determine lifelong performance in various neuropsychological domains. Metabolic pathologies such as overweight, obesity, and gestational diabetes in pregnant women are prevalent and increasing risk factors that may adversely affect long-term brain development in their offspring.Objective:
The objective of this research was to investigate the influence of maternal metabolic pathologies on the neurodevelopment of the offspring at 6 and 18 months of life.Design:
This was a prospective case-control study of 331 mother- and child pairs from Granada, Spain. The mothers were included during pregnancy into four groups according to their pre-gestational body mass index and their gestational diabetes status; overweight (n:56), obese (n:64), gestational diabetic (n:79), and healthy normal weight controls (n:132). At 6 months and 18 months we assessed the children with the Bayley III scales of neurodevelopment.Results:
At 6 months (n=215), we found significant group differences in cognition composite language, and expressive language. Post hoc test revealed unexpectedly higher scores in the obese group compared to the normal weight group and a similar trend in overweight and diabetic group. The effects on language remained significant after adjusting for confounders with an adjusted odds ratio for a value above median in composite language score of 3.3 (95% CI: 1.1, 10.0; p=0.035) for children of obese mothers. At 18 month (n=197), the offspring born to obese mothers had lost five points in language composite scores and the previous differences in language and cognition was replaced by a suggestive trend of lower gross motor scores in the overweight, obese, and diabetic groups.Conclusions:
Infants of obese mothers had a temporary accelerated development of cognition and language, followed by a rapid deceleration until 18 months of age, particularly of language scores. This novel observation prompts further confirmative studies to explore possible placental and neurodevelopmental mechanisms involved.This study was funded by Spanish Ministry of Innovation and Science. Junta de Andalucía: Excellence Projects (P06-CTS-02341); Spanish Ministry of Education (Grant no. SB2010-0025); Spanish Ministry of Economy and Competitiveness (BFU2012-40254-C03-01); Further support was received by Abbott Laboratories, Granada, Spain
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis
- …