21 research outputs found

    Dinámica mitocondrial y sus implicaciones en la desregulación metabólica y en la neurodegeneración

    Get PDF
    La dinámica mitocondrial es un concepto que incluye el movimiento de mitocondrias a lo largo del citoesqueleto, la regulación de la arquitectura mitocondrial, y su conectividad entre ellas, mediada por sucesos de fusión y fisión. Recientemente, nos hemos dado cuenta de la importancia que tiene la dinámica mitocondrial en en la fisiología celular, tras la identificación de los genes responsables de la fusión y de la fisión mitocondriales. Además, en la última década se han identificado mutaciones en genes que codifican para proteínas implicadas en la fusión mitocondrial tales como MFN2 y OPA1, y que provocan enfermedades neurodegenerativas (Charcot-Marie Tooth de tipo 2A y atrofia óptica autosómica dominante). Además, la alteración en la actividad de proteínas de fusión o fisión mitocondrial modula el metabolismo muscular. En este capítulo revisaremos los principales hallazgos obtenidos en el campo de la dinámica mitocon

    Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration.

    Get PDF
    Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.We thank M. Jardí, A. Navarro, J. M. Ballestero, K. Slobodnyuk, M. González, J. López and M. Raya for their technical contributions; A. Harada and K. Tanaka for assistance in ATAC-seq; all of the members of the P.M.-C. laboratory for discussions; J. Campisi for p16-3MR mice; J. A. Fernández-Blanco (PRBB Animal Facility); O. Fornas (UPF/CRG FACS Facility); E. Rebollo (IBMB Molecular Imaging Platform); V. A. Raker for manuscript editing; and the members of the Myoage network (A. Maier) for human material. We acknowledge funding from MINECO-Spain (RTI2018-096068, to P.M.-C. and E.P.); ERC-2016-AdG-741966, LaCaixa-HEALTHHR17-00040, MDA, UPGRADE-H2020-825825, AFM, DPP-Spain, Fundació La MaratóTV3-80/19- 202021 and MWRF to P.M.-C.; Fundació La MaratóTV3-137/38-202033 to A.L.S.; Maria-de-Maeztu ́ Program for Units of Excellence to UPF (MDM-2014-0370) and Severo-Ochoa Program for Centers of Excellence to CNIC (SEV-2015-0505). This work was also supported by JST-CREST JPMJCR16G1 and MEXT/JSPS JP20H00456/18H05527 to Y.O.; the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502) to M.A.E.; V.M. and A.C. were supported by FPI and Maria-de-Maeztu predoctoral fellowships, respectively, and V.S. by a Marie Skłodowska-Curie individual fellowship. Parts of the figures were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licences/by/3.0/).S

    Efectes de la proteïna Mitofusina 2 sobre el metabolisme muscular

    Get PDF
    Els mitocondris són orgànuls citoplasmàtics que tenen un paper fonamental en múltiples processos biològics com l’oxidació de substrats i la producció d’ATP, la senyalització cel•lular, l’apoptosi, el control del cicle cel•lular i l’homeòstasi del calci. Els mitocondris són orgànuls dinàmics, que pateixen canvis de morfologia regulats per processos de fusió i de fissió. Existeix un equilibri entre ambdós processos que és indispensable per a la correcta funció mitocondrial. Les proteïnes que participen directament en la fusió mitocondrial en mamífers són les mitofusines (Mfn1 i Mfn2), localitzades a la membrana mitocondrial externa i OPA1, situada a la membrana mitocondrial interna. Diferents estudis han demostrat que la proteïna Mfn2, a més de promoure la fusió dels mitocondris, també està implicada en la interacció entre els mitocondris i el reticle endoplasmàtic i que participa en la regulació del cicle cel•lular i del metabolisme mitocondrial. Per altra banda, l’expressió de Mfn2 es troba disminuïda en múscul esquelètic en situacions de resistència a la insulina, com l’obesitat o la diabetis de tipus 2, que a la vegada es caracteritzen per una alterada activitat mitocondrial. En base a aquestes observacions, l’objectiu principal de la present tesi doctoral ha estat estudiar els efectes de la modulació de l’expressió de Mfn2 sobre el metabolisme i la bioenergètica mitocondrial en múscul esquelètic. Amb aquest propòsit hem expressat una forma truncada de Mfn2 (hMfn2Δ614-757) o bé hem reprimit l’expressió de Mfn2 endògena en el model cel•lular C2C12 i en múscul esquelètic de ratolí. Per dur a terme aquest objectiu hem generat 3 models de ratolí diferents: el model d’expressió transitòria de la forma hMfn2Δ614-757; el model de repressió transitòria de Mfn2 i el ratolí knockdown de Mfn2. Els dos primers models han estat generats mitjançant la tècnica de l’electrotransferència d’ADN en múscul esquelètic. La sobreexpressió de la forma hMfn2Δ614-757 en cèl•lules C2C12 diferenciades incrementa el consum d’oxigen mitocondrial en situació basal i també en desacoblar la cadena de transport d’electrons de la síntesi d’ATP, suggerint una major capacitat respiratòria dels miotubs que expressen la hMfn2Δ614-757. En múscul esquelètic de ratolí, l’expressió d’aquesta forma de Mfn2 causa una estimulació de la taxa d’oxidació de glucosa així com un increment de la Respiratory Control Ratio (RCR). La inducció del metabolisme mitocondrial observada en sobreexpressar la forma hMfn2Δ614-757 no és deguda a un augment de la massa mitocondrial, sinó a un increment en l’expressió i l’activitat d’alguns dels complexes de la cadena respiratòria mitocondrial. La repressió de Mfn2 en miotubs C2C12 produeix un increment en la respiració no associada a la producció d’ATP o proton leak i una disminució en el potencial de membrana mitocondrial. Aquests resultats indiquen que la repressió de Mfn2 provoca el desacoblament de la cadena de transport d’electrons i la síntesi d’ATP, suggerint una disminució de l’eficiència de la fosforilació oxidativa. Els músculs dels ratolins knockdown de Mfn2 presenten una reducció de la taxa d’oxidació de glucosa i de la Respiratory Control Ratio. A més, la repressió de Mfn2 disminueix l’activitat del complex IV de la cadena respiratòria. En conjunt aquests resultats suggereixen que la disminució de l’expressió de Mfn2 origina una disfunció del sistema de transport electrònic mitocondrial. També cal remarcar que els ratolins knockdown de Mfn2 presenten una major susceptibilitat a desenvolupar resistència a la insulina en resposta a l’envelliment o a una dieta rica en greixos. La disfunció mitocondrial i l’augment en la producció d’espècies reactives d’oxigen (ROS) observats en el múscul esquelètic d’aquests ratolins podrien explicar aquesta major susceptibilitat.Mitochondria are cellular organelles that play a fundamental role in many cellular functions, such as substrates oxidation, ATP production, apoptosis and calcium economy. Mitochondria are dynamic organelles that can fuse and divide; the balance between both processes is crucial for a correct mitochondrial function. The most relevant proteins described to date involved in the regulation of mitochondrial fusion are mitofusins 1 and 2 (Mfn1 and Mfn2, respectively) and OPA1. Substantial data indicates that Mfn2 is also a key regulator of cell cycle and mitochondrial metabolism. On the other hand, Mfn2 expression is reduced in skeletal muscle of obese subjects and type 2 diabetic patients, situations characterized by altered mitochondrial activity. Based on these observations, the main objective of this thesis was the study of the metabolic role of Mfn2 in skeletal muscle. We have studied the metabolic effects caused by the manipulation of Mfn2 expression in mice skeletal muscle in vivo. By means of DNA electrotransfer technologies, we have expressed a truncated Mfn2 mutant in skeletal muscle and we have also repressed endogenous Mfn2 expression with microRNAs. We have also generated a skeletal muscle Mfn2 knockout mouse model (Mfn2 KO). The expression of truncated Mfn2 mutant in tibialis stimulated glucose oxidation and increased the Respiratory Control Ratio (RCR). It also increased the expression of subunits Cox4 of OXPHOS complex IV and Atp5a1 of complex V. We observed these metabolic effects in absence of changes in mitochondrial content. The repression of Mfn2 in mice skeletal muscle caused a marked reduction in the expression of subunit Cox4 of OXPHOS complex IV, accompanied with a 20% of decrease in COX activity. In this case we neither observed differences in mitochondrial content. Skeletal muscle from Mfn2 KO mice showed a decrease in glucose oxidation and in the RCR. In addition, Mfn2 KO mice showed a higher susceptibility to develop insulin resistance in response to aging or a high fat diet. Mitochondrial dysfunction and the increased ROS production observed in skeletal muscle of these mice could explain this higher susceptibility

    Role of UCP2 in the Energy Metabolism of the Cancer Cell Line A549

    No full text
    The uncoupling protein UCP2 is a mitochondrial carrier for which transport activity remains controversial. The physiological contexts in which UCP2 is expressed have led to the assumption that, like UCP1, it uncouples oxidative phosphorylation and thereby reduces the generation of reactive oxygen species. Other reports have involved UCP2 in the Warburg effect, and results showing that UCP2 catalyzes the export of matrix C4 metabolites to facilitate glutamine utilization suggest that the carrier could be involved in the metabolic adaptations required for cell proliferation. We have examined the role of UCP2 in the energy metabolism of the lung adenocarcinoma cell line A549 and show that UCP2 silencing decreased the basal rate of respiration, although this inhibition was not compensated by an increase in glycolysis. Silencing did not lead to either changes in proton leakage, as determined by the rate of respiration in the absence of ATP synthesis, or changes in the rate of formation of reactive oxygen species. The decrease in energy metabolism did not alter the cellular energy charge. The decreased cell proliferation observed in UCP2-silenced cells would explain the reduced cellular ATP demand. We conclude that UCP2 does not operate as an uncoupling protein, whereas our results are consistent with its activity as a C4-metabolite carrier involved in the metabolic adaptations of proliferating cells

    The dystrophin glycoprotein complex regulates the epigenetic activation of muscle stem cell commitment

    No full text
    Asymmetrically dividing muscle stem cells in skeletal muscle give rise to committed cells, where the myogenic determination factor Myf5 is transcriptionally activated by Pax7. This activation is dependent on Carm1, which methylates Pax7 on multiple arginine residues, to recruit the ASH2L:MLL1/2:WDR5:RBBP5 histone methyltransferase complex to the proximal promoter of Myf5. Here, we found that Carm1 is a specific substrate of p38γ/MAPK12 and that phosphorylation of Carm1 prevents its nuclear translocation. Basal localization of the p38γ/p-Carm1 complex in muscle stem cells occurs via binding to the dystrophin-glycoprotein complex (DGC) through β1-syntrophin. In dystrophin-deficient muscle stem cells undergoing asymmetric division, p38γ/β1-syntrophin interactions are abrogated, resulting in enhanced Carm1 phosphorylation. The resulting progenitors exhibit reduced Carm1 binding to Pax7, reduced H3K4-methylation of chromatin, and reduced transcription of Myf5 and other Pax7 target genes. Therefore, our experiments suggest that dysregulation of p38γ/Carm1 results in altered epigenetic gene regulation in Duchenne muscular dystrophy.We thank Drs. Jeffrey Dilworth and Lynn Megeney for careful reading of the manuscript. We also thank Jennifer Ritchie for animal husbandry, Dr. Lawrence Puente for mass spectrometry analysis, Dr. Chloë van Oostende for microscopy and imaging analysis, Paul Oleynik for FACS, and Fan Xiao, Natasha Mercier, and David Wilson for technical assistance. N.C.C. is a recipient of the Centre for Neuromuscular Disease Scholarship in Translational Research Award from the University of Ottawa Brain and Mind Research Institute and was supported by Postdoctoral fellowships from the Canadian Institutes of Health Research (CIHR) and the Ontario Institute for Regenerative Medicine (OIRM). F.P.C. was supported by a Postdoctoral fellowship from the French Muscular Dystrophy Association (AFM)-Téléthon (380782). C.E.B. is supported by a Postdoctoral fellowship from OIRM. M.L. was supported by a Postdoctoral fellowship from CIHR. P.M.-C. acknowledges support from ERC-2016-AdG-741966 (STEM-AGING) and SAF2015-67369-R. M.A.R. holds the Canada Research Chair in Molecular Genetics. These studies were carried out with support of grants to M.A.R. from the US NIH (R01AR044031), the Canadian Institutes of Health Research (FDN-148387), the Muscular Dystrophy Association (USA), E-Rare-2: Canadian Institutes of Health Research/Muscular Dystrophy Canada (ERA-132935), and the Stem Cell Network

    Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration

    No full text
    Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.We thank M. Jardí, A. Navarro, J. M. Ballestero, K. Slobodnyuk, M. González, J. López and M. Raya for their technical contributions; A. Harada and K. Tanaka for assistance in ATAC-seq; all of the members of the P.M.-C. laboratory for discussions; J. Campisi for p16-3MR mice; J. A. Fernández-Blanco (PRBB Animal Facility); O. Fornas (UPF/CRG FACS Facility); E. Rebollo (IBMB Molecular Imaging Platform); V. A. Raker for manuscript editing; and the members of the Myoage network (A. Maier) for human material. We acknowledge funding from MINECO-Spain (RTI2018-096068, to P.M.-C. and E.P.); ERC-2016-AdG-741966, LaCaixa-HEALTH-HR17-00040, MDA, UPGRADE-H2020-825825, AFM, DPP-Spain, Fundació La MaratóTV3-80/19-202021 and MWRF to P.M.-C.; Fundació La MaratóTV3-137/38-202033 to A.L.S.; María-de-Maeztu Program for Units of Excellence to UPF (MDM-2014-0370) and Severo-Ochoa Program for Centers of Excellence to CNIC (SEV-2015-0505). This work was also supported by JST-CREST JPMJCR16G1 and MEXT/JSPS JP20H00456/18H05527 to Y.O.; the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502) to M.A.E.; V.M. and A.C. were supported by FPI and Maria-de-Maeztu predoctoral fellowships, respectively, and V.S. by a Marie Skłodowska-Curie individual fellowship. Parts of the figures were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licences/by/3.0/)
    corecore