612 research outputs found

    Associations Between Presenting Symptoms, Clinicopathological Parameters, and Prognosis in a Contemporary Series of Patients With Renal Cell Carcinoma

    Get PDF
    PURPOSE: To evaluate the impact of presenting symptoms on survival in a contemporary series of patients with renal cell carcinoma (RCC). MATERIALS AND METHODS: We prospectively recorded data on the presenting symptoms, pathology, and RCC-specific survival of 633 consecutive RCC patients who underwent surgery between 2003 and 2012. RESULTS: Four hundred thirty-three RCCs (68%) were incidental, 111 (18%) were associated with local symptoms, and 89 (14%) were associated with systemic symptoms. Among those with incidental RCC, 317 patients (73%) were completely asymptomatic and 116 patients (27%) presented with symptoms not related to the tumor. During a median follow-up interval of 40 months (interquartile range: 39 to 69 months), 77 patients died from RCC. In univariate analyses, symptom classification was significantly associated with RCC-specific survival (p<0.001). Patients with incidental RCC and unrelated symptoms tended to have worse prognosis than did patients who were completely asymptomatic, although this difference was not statistically significant (p=0.057). The symptom classification was associated with advanced TNM stages (p<0.001) and grade (p<0.001). CONCLUSIONS: This study confirms that presenting symptoms are associated with tumor characteristics and survival. The majority of RCCs are diagnosed incidentally in patients without any symptoms or with symptoms not related to RCC. Patients in the latter group tend to have a worse prognosis than do patients who are completely asymptomatic. With the increasing number of incidentally diagnosed RCCs, substratification of patients with incidental tumors may be prognostically relevant

    Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    Full text link
    In the present contribution we review basic mathematical results for three physical systems involving self-organising solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e., time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different system. First, we discuss the linear stability of homogeneous steady states, i.e., flat films; and second the systematics of non-trivial steady states, i.e., drop/hole states for dewetting films and quantum dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing to the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly not related physical systems mathematically, but does as well allow to discuss model extensions in a more unified way

    Emergence and divergence of major lineages of shiga-toxin-producing escherichia coli in Australia

    Get PDF
    Shiga-toxin-producing Escherichia coli (STEC) infection is an important global cause of foodborne disease. To date however, genomics-based studies of STEC have been predominately focused upon STEC collected in the Northern Hemisphere. Here, we demonstrate the population structure of 485 STEC isolates in Australia, and show that several clonal groups (CGs) common to Australia were infrequently detected in a representative selection of contemporary STEC genomes from around the globe. Further, phylogenetic analysis demonstrated that lineage II of the global O157:H7 STEC was most prevalent in Australia, and was characterized by a frameshift mutation in flgF, resulting in the H-non-motile phenotype. Strong concordance between in silico and phenotypic serotyping was observed, along with concordance between in silico and conventional detection of stx genes. These data represent the most comprehensive STEC analysis from the Southern Hemisphere, and provide a framework for future national genomics-based surveillance of STEC in Australia.Danielle J. Ingle, Anders Gonçalves da Silva, Mary Valcanis, Susan A. Ballard, Torsten Seemann, Amy V. Jennison, Ivan Bastian, Rolf Wise, Martyn D. Kirk, Benjamin P. Howden, Deborah A. Williamso

    Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b - First data from the GIARPS Commissioning

    Get PDF
    Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO - B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS - N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does not change at different wavelengths, while stellar activity induces wavelength-dependent RV variations, which are significantly reduced in the NIR range with respect to the VIS. Results. The NIR radial velocity measurements from GIANO - B and IGRINS show an average amplitude of about one quarter with respect to previously published VIS data, as expected when the RV jitter is due to stellar activity. Coeval multi-band photometry surprisingly shows larger amplitudes in the NIR range, explainable with a mixture of cool and hot spots in the same active region. Conclusions. In this work, the claimed massive planet around BD+20 1790 is ruled out by our data. We exploited the crucial role of multi- wavelength spectroscopy when observing young active stars: thanks to facilities like GIARPS that provide simultaneous observations, this method can reach its maximum potential.Comment: 12 pages, 7 figure

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB

    Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

    Get PDF
    The static and dynamic structure of liquid Al is studied using the orbital free ab-initio molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely T = 943 K and 1323 K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our ab-initio results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR

    Population Genomics and Phylogeography of an Australian Dairy Factory Derived Lytic Bacteriophage

    Get PDF
    In this study, we present the full genomic sequences and evolutionary analyses of a serially sampled population of 28 Lactococcus lactis–infecting phage belonging to the 936-like group in Australia. Genome sizes were consistent with previously available genomes ranging in length from 30.9 to 32.1 Kbp and consisted of 55–65 open reading frames. We analyzed their genetic diversity and found that regions of high diversity are correlated with high recombination rate regions (P value = 0.01). Phylogenetic inference showed two major clades that correlate well with known host range. Using the extended Bayesian Skyline model, we found that population size has remained mostly constant through time. Moreover, the dispersion pattern of these genomes is in agreement with human-driven dispersion as suggested by phylogeographic analysis. In addition, selection analysis found evidence of positive selection on codon positions of the Receptor Binding Protein (RBP). Likewise, positively selected sites in the RBP were located within the neck and head region in the crystal structure, both known determinants of host range. Our study demonstrates the utility of phylogenetic methods applied to whole genome data collected from populations of phage for providing insights into applied microbiology
    corecore