130 research outputs found

    Shock Experiments on Basalt - Ferric Sulfate Mixes at 21 GPa & 49 GPa and their Relevance to Martian Meteorite Impact Glasses

    Get PDF
    Large abundance of Martian atmospheric gases and neutron-induced isotopic excesses as well as Rb-Sr isotopic variations determined in some impact glasses in basaltic shergottites (e.g., Shergotty #DBS, Zagami #H1 and EET79001 #27, #8 and #104) provide definitive evidence for the occurrence of a Martian regolith component in their constituent mineral assemblages. Some of these glass-es, known as gas-rich impact-melts (GRIM), contain numerous micron-sized iron sulfide blebs along with minor amounts of iron sulfate particulates. As these GRIM glasses contain a Martian regolith component and as iron sulfates (but not sulfides) are found to occur abundantly on the Mars surface, we suggested that the sulfide blebs in GRIMs were likely generated by shock-reduction of the parental iron sulfate bearing regolith material that had been incorporated into the cavities/crevices of basaltic host rock prior to the impact event on Mars. To test whether the sulfates could be reduced to sulfides by impact shock, we carried out laboratory shock experiments on a basalt plus ferric sulfate mixture at 49 GPa at the Caltech Shock Wave Laboratory and at 21 GPa at Johnson Space Center (JSC) Experimental Impact Laboratory. The experimental details and the preliminary results for the Caltech 49 GPa experiment were presented at LPSC last year. Here, we report the results for the 21 GPa experiment at JSC and compare these results to obtain further insight into the mechanism of the bleb formation in the GRIM glasses

    Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at Approximately 40-50 GPa and Their Relevance to the Martian Regolith Component Present in Shergottites

    Get PDF
    Basaltic shergottites such as Shergotty, Zagami and EET79001 contain impact melt glass pockets that are rich in Martian atmospheric gases [1] and are known as gas-rich impact-melt (GRIM) glasses. These glasses show evidence for the presence of a Martian regolith component based on Sm and Kr isotopic studies [2]. The GRIM glasses are sometimes embedded with clusters of innumerable micron-sized iron-sulfide blebs associated with minor amounts of iron sulfate particles [3, 4]. These sulfide blebs are secondary in origin and are not related to the primary igneous sulfides occurring in Martian meteorites. The material comprising these glasses arises from the highly oxidizing Martian surface and sulfur is unlikely to occur as sulfide in the Martian regoilith. Instead, sulfur is shown to occur as sulfate based on APXS and Mossbauer results obtained by the Opportunity and Spirit rovers at Meridiani and Gusev [5]. We have earlier suggested that the micron-sized iron sulfide globules in GRIM glasses were likely produced by shock-reduction of iron sulfate occurring in the regolith at the time when the GRIM glasses were produced by the meteoroid impact that launched the Martian meteorites into space [6]. As a result of high energy deposition by shock (approx. 40-60 GPa), the iron sulfate bearing phases are likely to melt along with other regolith components and will get reduced to immiscible sulfide fluid under reducing conditions. On quenching, this generates a dispersion of micron-scale sulfide blebs. The reducing agents in our case are likely to be H2 and CO which were shock-implanted from the Martian atmosphere into these glasses along with the noble gases. We conducted lab simulation experiments in the Lindhurst Laboratory of Experimental Geophysics at Caltech and the Experimental Impact Laboratory at JSC to test whether iron sulfide globules can be produced by impact-driven reduction of iron sulfate by subjecting Columbia River Basalt (CRB) and ferric sulfate mixtures to shock pressures between 40 and 50 GPa under reducing conditions. The experimental products from the recovered samples were analyzed by SEM and microprobe techniques at JSC

    No Exit? Withdrawal Rights and the Law of Corporate Reorganizations

    Get PDF
    Bankruptcy scholarship is largely a debate about the comparative merits of a mandatory regime on one hand and bankruptcy by free design on the other. By the standard account, the current law of corporate reorganization is mandatory. Various rules that cannot be avoided ensure that investors’ actions are limited and they do not exercise their rights against specialized assets in a way that destroys the value of a business as a whole. These rules solve collective action problems and reduce the risk of bargaining failure. But there are costs to a mandatory regime. In particular, investors cannot design their rights to achieve optimal monitoring as they could in a system of bankruptcy by free design. This Article suggests that the academic debate has missed a fundamental feature of the law. Bankruptcy operates on legal entities, not on firms in the economic sense. For this reason, sophisticated investors do not face a mandatory regime at all. The ability of investors to place assets in separate entities gives them the ability to create specific withdrawal rights in the event the firm encounters financial distress. There is nothing mandatory about rules like the automatic stay when assets can be partitioned off into legal entities that are beyond the reach of the bankruptcy judge. Thus, by partitioning assets of one economic enterprise into different legal entities, investors can create a tailored bankruptcy regime. In this way, legal entities serve as building blocks that can be combined to create specific and varied but transparent investor withdrawal rights. This regime of tailored bankruptcy has been unrecognized and underappreciated and may be preferable to both mandatory and free design regimes. By allowing a limited number of investors to opt out of bankruptcy in a particular, discrete, and visible way, investors as a group may be able to both limit the risk of bargaining failure and at the same time enjoy the disciplining effect that a withdrawal right brings with it

    Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice

    Get PDF
    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner

    Postoperative acute kidney injury in adult non-cardiac surgery:joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative

    Get PDF
    Postoperative acute kidney injury (PO-AKI) is a common complication of major surgery that is strongly associated with short-term surgical complications and long-term adverse outcomes, including increased risk of chronic kidney disease, cardiovascular events and death. Risk factors for PO-AKI include older age and comorbid diseases such as chronic kidney disease and diabetes mellitus. PO-AKI is best defined as AKI occurring within 7 days of an operative intervention using the Kidney Disease Improving Global Outcomes (KDIGO) definition of AKI; however, additional prognostic information may be gained from detailed clinical assessment and other diagnostic investigations in the form of a focused kidney health assessment (KHA). Prevention of PO-AKI is largely based on identification of high baseline risk, monitoring and reduction of nephrotoxic insults, whereas treatment involves the application of a bundle of interventions to avoid secondary kidney injury and mitigate the severity of AKI. As PO-AKI is strongly associated with long-term adverse outcomes, some form of follow-up KHA is essential; however, the form and location of this will be dictated by the nature and severity of the AKI. In this Consensus Statement, we provide graded recommendations for AKI after non-cardiac surgery and highlight priorities for future research
    corecore