2,265 research outputs found
Distinguishing the “Truly National” From the “Truly Local”: Customary Allocation, Commercial Activity, and Collective Action
This Essay makes two claims about different methods of defining the expanse and limits of the Commerce Clause. My first claim is that approaches that privilege traditional subjects of state regulation are unworkable and undesirable. These approaches are unworkable in light of the frequency with which the federal government and the states regulate the same subject matter in our world of largely overlapping federal and state legislative jurisdiction. The approaches are undesirable because the question of customary allocation is unrelated to the principal reason why Congress possesses the power to regulate interstate commerce: solving collective action problems involving multiple states. These problems are evident in the way that some federal judges invoked regulatory custom in litigation over the constitutionality of the minimum coverage provision in the Patient Protection and Affordable Care Act. The areas of health insurance and health care are not of exclusive state concern, and it is impossible to lose—or to win—a competition requiring skillful lawyers or judges to describe them as more state than federal, or more federal than state. Nor is it most important what the answer is.
More promising are the approaches that view congressional authority as turning on either commercial activity or collective action problems facing the states. My second claim is that these two approaches have advantages and disadvantages, and that the choice between them exemplifies the more general tension between applying rules and applying their background justifications. I have previously defended a collective action approach to Article I, Section 8. My primary purpose in this Essay is to clarify the jurisprudential stakes in adopting one method or the other and to identify the problems that advocates of each approach must address
Impact cratering in reduced-gravity environments: Early experiments on the NASA KC-135 aircraft
Impact experimentation on the NASA KC-135 Reduced-Gravity Aircraft was shown to be possible, practical, and of considerable potential use in examining the role of gravity on various impact phenomena. With a minimal facility, crater dimensional and growth-times were measured, and have demonstrated both agreement and disagreement with predictions. A larger facility with vacuum capability and a high-velocity gun would permit a much wider range of experimentation
Reframing Kurtz’s Painting: Colonial Legacies and Minority Rights in Ethnically Divided Societies
Minority rights constitute some of the most normatively and economically important human rights. Although the political science and legal literatures have proffered a number of constitutional and institutional design solutions to address the protection of minority rights, these solutions are characterized by a noticeable neglect of, and lack of sensitivity to, historical processes. This Article addresses that gap in the literature by developing a causal argument that explains diverging practices of minority rights protections as functions of colonial governments’ variegated institutional practices with respect to particular ethnic groups. Specifically, this Article argues that in instances where colonial governments politicize and institutionalize ethnic hegemony in the pre-independence period, an institutional legacy is created that leads to lower levels of minority rights protections. Conversely, a uniform treatment and depoliticization of ethnicity prior to independence ultimately minimizes ethnic cleavages post-independence and consequently causes higher levels of minority rights protections. Through a highly structured comparative historical analysis of Botswana and Ghana, this Article builds on a new and exciting research agenda that focuses on the role of long-term historio-structural and institutional influences on human rights performance and makes important empirical contributions by eschewing traditional methodologies that focus on single case studies that are largely descriptive in their analyses. Ultimately, this Article highlights both the strength of a historical approach to understanding current variations in minority rights protections and the varied institutional responses within a specific colonial government
Comparison of continuous and discontinuous collisional bumpers: Dimensionally scaled impact experiments into single wire meshes
An experimental inquiry into the utility of discontinuous bumpers was conducted to investigate the collisional outcomes of impacts into single grid-like targets and to compare the results with more traditional bumper designs that employ continuous sheet stock. We performed some 35 experiments using 6.3 and 3.2 mm diameter spherical soda-lime glass projectiles at low velocities (less than 2.5 km/s) and 13 at velocities between 5 and 6 km/s, using 3.2 mm spheres only. The thrust of the experiments related to the characterization of collisional fragments as a function of target thickness or areal shield mass of both bumper designs. The primary product of these experiments was witness plates that record the resulting population of collisional fragments. Substantial interpretive and predictive insights into bumper performance were obtained. All qualitative observations (on the witness plates) and detailed measurements of displaced masses seem simply and consistently related only to bumper mass available for interaction with the impactor. This renders the grid bumper into the superior shield design. These findings present evidence that discontinuous bumpers are a viable concept for collisional shields, possibly superior to continuous geometries
Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper
The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present
Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment
The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated
Negative tunneling magnetoresistance by canted magnetization in MgO/NiO tunnel barriers
The influence of insertion of an ultra-thin NiO layer between the MgO barrier
and ferromagnetic electrode in magnetic tunnel junctions has been investigated
by measuring the tunneling magnetoresistance and the X-ray magnetic circular
dichroism (XMCD). The magnetoresistance shows a high asymmetry with respect to
bias voltage, giving rise to a negative value of -16% at 2.8 K. We attribute
this to the formation of non-collinear spin structures in the NiO layer as
observed by XMCD. The magnetic moments of the interface Ni atoms tilt from the
easy axis due to exchange interaction and the tilting angle decreases with
increasing the NiO thickness. The experimental observations are further support
by non-collinear spin density functional theory
A Capacitively loaded Antenna for use in Mobile Handsets
YesA tuneable slotted patch antenna design is presented and verified for use in the DCS, PCS and UMTS bands. The tuning circuit consists of two varactor diodes with some passive components, and is integrated fully with the r radiator patch, with the varactors occupying different locations over the slot. The tuning does not require any further modification to the patch or feed geometry. Good agreement is observed between the predicted and observed impedance bandwidth, return loss, gain and radiation pattern, throughout the range 1.70 GHz-2.05 GHz
- …
