163 research outputs found

    Interventions to promote cost-effectiveness in adult Intensive care units: consensus statement and considerations for best practice from a multidisciplinary and multinational eDelphi study

    Get PDF
    Background There is limited evidence to guide interventions that promote cost-effectiveness in adult intensive care units (ICU). The aim of this consensus statement is to identify globally applicable interventions for best ICU practice and provide guidance for judicious use of resources. Methods A three-round modified online Delphi process, using a web-based platform, sought consensus from 61 multidisciplinary ICU experts (physicians, nurses, allied health, administrators) from 21 countries. Round 1 was qualitative to ascertain opinions on cost-effectiveness criteria based on four key domains of high-value healthcare (foundational elements; infrastructure fundamentals; care delivery priorities; reliability and feedback). Round 2 was qualitative and quantitative, while round 3 was quantitative to reiterate and establish criteria. Both rounds 2 and 3 utilized a five-point Likert scale for voting. Consensus was considered when > 70% of the experts voted for a proposed intervention. Thereafter, the steering committee endorsed interventions that were identified as ‘critical’ by more than 50% of steering committee members. These interventions and experts’ comments were summarized as final considerations for best practice. Results At the conclusion of round 3, consensus was obtained on 50 best practice considerations for cost-effectiveness in adult ICU. Finally, the steering committee endorsed 9 ‘critical’ best practice considerations. This included adoption of a multidisciplinary ICU model of care, focus on staff training and competency assessment, ongoing quality audits, thus ensuring high quality of critical care services whether within or outside the four walls of ICUs, implementation of a dynamic staff roster, multidisciplinary approach to implementing end-of-life care, early mobilization and promoting international consensus efforts on the Green ICU concept. Conclusions This Delphi study with international experts resulted in 9 consensus statements and best practice considerations promoting cost-effectiveness in adult ICUs. Stakeholders (government bodies, professional societies) must lead the efforts to identify locally applicable specifics while working within these best practice considerations with the available resources

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Inhibition of FOXO3 Tumor Suppressor Function by βTrCP1 through Ubiquitin-Mediated Degradation in a Tumor Mouse Model

    Get PDF
    The ubiquitin-proteasome system is the primary proteolysis machine for controlling protein stability of the majority of regulatory proteins including those that are critical for cancer development. The forkhead box transcription factor FOXO3 plays a key role in regulating tumor suppression; however, the control of FOXO3 protein stability remains to be established. It is crucial to elucidate the molecular mechanisms underlying the ubiquitin-mediated degradation of FOXO3 tumor suppressor.Here we show that betaTrCP1 oncogenic ubiquitin E3-ligase interacts with FOXO3 and induces its ubiquitin-dependent degradation in an IkappaB kinase-beta phosphorylation dependent manner. Silencing betaTrCP1 augments FOXO3 protein level, resulting in promoting cellular apoptosis in cancer cells. In animal models, increasing FOXO3 protein level by silencing betaTrCP1 suppresses tumorigenesis, whereas decreasing FOXO3 by over-expressing betaTrCP1 promotes tumorigenesis and tumor growth in vivo.This is a unique demonstration that the betaTrCP1-mediated FOXO3 degradation plays a crucial role in tumorigenesis. These findings significantly contribute to understanding of the control of FOXO3 stability in cancer cells and may provide opportunities for developing innovative anticancer therapeutic modalities

    Role of Portal Vein Embolization in Hepatocellular Carcinoma Management and Its Effect on Recurrence: A Case-control Study

    Get PDF
    Background Liver regeneration that occurs after portal vein embolization (PVE) may have adverse effects on the microscopic tumor foci in the residual liver mass in patients with hepatocellular carcinoma (HCC). Methods Fifty-four HCC patients with inadequate functional residual liver volume were offered PVE during a seven-year period. Among them, 34 (63%) patients underwent curative resection. They were compared with a matched control group (n = 102) who underwent surgery without PVE. Postoperative complications, pattern of recurrence, and survival were compared between groups. Results In the PVE group, a pre-embolization functional residual liver volume of 23% (12-33.5%) improved to 34% (20-54%) (p = 0.005) at the time of surgery. When the two groups were compared, minor (PVE, 24%; control, 29%; p = 0.651) and major (PVE, 18%; control, 15%; p = 0.784) complications were similar. After a follow-up period of 35 months (standard deviation 25 months), extrahepatic recurrences were detected in 10 PVE patients (29%) and 41 control patients (40%) (p = 0.310). Intrahepatic recurrences were seen in 10 (29%) and 47 (46%) cases (p = 0.109) in the PVE and control groups, respectively. In the PVE group, 41% (n = 14) of the recurrences were detected before one year, compared with 42% (n = 43) in the control group (p = 1). Disease-free survival rates at 1, 3, and 5 years were 57, 29, and 26% in the control group and 60, 42, and 42% in the PVE group (log-rank, p = 0.335). On multivariate analysis, PVE was not a factor affecting survival (p = 0.821). Conclusions Portal vein embolization increases the resectability of initially unresectable HCC due to inadequate functional residual liver volume, and it has no deleterious oncological effect after major resection of HCC. © The Author(s) 2012.published_or_final_versionSpringer Open Choice, 28 May 201

    Detection and verification of malting quality QTLs using wild barley introgression lines

    Get PDF
    A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs

    Reward-Related Behavioral Paradigms for Addiction Research in the Mouse: Performance of Common Inbred Strains

    Get PDF
    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touchscreen-based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research

    Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy

    Get PDF
    Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo

    Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Get PDF
    Extent: 15p.Background: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.King-Hwa Ling, Peter J Brautigan, Christopher N Hahn, Tasman Daish, John R Rayner, Pike-See Cheah, Joy M Raison, Sandra Piltz Jeffrey R Mann, Deidre M Mattiske, Paul Q Thomas, David L Adelson and Hamish S Scot
    corecore