334 research outputs found

    Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme

    Full text link
    I approach the Problem of Time and other foundations of Quantum Cosmology using a combined histories, timeless and semiclassical approach. This approach is along the lines pursued by Halliwell. It involves the timeless probabilities for dynamical trajectories entering regions of configuration space, which are computed within the semiclassical regime. Moreover, the objects that Halliwell uses in this approach commute with the Hamiltonian constraint, H. This approach has not hitherto been considered for models that also possess nontrivial linear constraints, Lin. This paper carries this out for some concrete relational particle models (RPM's). If there is also commutation with Lin - the Kuchar observables condition - the constructed objects are Dirac observables. Moreover, this paper shows that the problem of Kuchar observables is explicitly resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach for nontrivial linear constraints that is also a construction of Dirac observables, I consider theories for which Kuchar observables are formally known, giving the relational triangle as an example. As a second route, I apply an indirect method that generalizes both group-averaging and Barbour's best matching. For conceptual clarity, my study involves the simpler case of Halliwell 2003 sharp-edged window function. I leave the elsewise-improved softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide comments on Halliwell's approach and how well it fares as regards the various facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references. 25 pages, 4 figure

    Triangleland. II. Quantum Mechanics of Pure Shape

    Full text link
    Relational particle models are of value in the absolute versus relative motion debate. They are also analogous to the dynamical formulation of general relativity, and as such are useful for investigating conceptual strategies proposed for resolving the problem of time in quantum general relativity. Moreover, to date there are few explicit examples of these at the quantum level. In this paper I exploit recent geometrical and classical dynamics work to provide such a study based on reduced quantization in the case of pure shape (no scale) in 2-d for 3 particles (triangleland) with multiple harmonic oscillator type potentials. I explore solutions for these making use of exact, asymptotic, perturbative and numerical methods. An analogy to the mathematics of the linear rigid rotor in a background electric field is useful throughout. I argue that further relational models are accessible by the methods used in this paper, and for specific uses of the models covered by this paper in the investigation of the problem of time (and other conceptual and technical issues) in quantum general relativity.Comment: Journal Reference added, minor updates to References and Figure

    Ascertaining the notion of board accountability in Chinese listed companies

    Get PDF
    Accountability is a concept that has been frequently referred to in Anglo-American systems and in the OECD’s corporate governance documents, as well as in the English translations of corporate governance documents from non-English speaking jurisdictions. It is in the Anglo-American literature, in particular, where the word finds prominence. It has been suggested in China that accountability is one of the basic principles of corporate governance that needs to be consistently enforced. But does this mean that board accountability, as it has been provided for in the Anglo-American system, is actually an element of Chinese corporate governance? If not, should it be adopted? Or should China develop a concept that is more appropriately included as a critical part of its own particular corporate governance needs? The paper aims to address these matters in order to ascertain where Chinese corporate governance stands on accountability as far as the boards of large listed companies are concerned, and what it should do. We opine that while there are elements of accountability in Chinese corporate governance, it does not have the form of accountability embraced in Anglo-American systems. But, it is argued, as China moves from having a system totally based on administrative governance to one that is based more on economic governance the kind of approach that applies in Anglo-American jurisdictions is likely to become more relevant. Within a hybrid corporate governance system combining elements of both administrative and economic governance, we develop a unique “wenze system” with forms and characters of accountability that is likely to develop to address the needs of corporate governance in China and the fostering of its listed companies

    Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors

    Full text link
    There has been an intense search in recent years for long-lived spin-polarized carriers for spintronic and quantum-computing devices. Here we report that spin polarized quasi-particles in superconducting aluminum layers have surprisingly long spin-lifetimes, nearly a million times longer than in their normal state. The lifetime is determined from the suppression of the aluminum's superconductivity resulting from the accumulation of spin polarized carriers in the aluminum layer using tunnel spin injectors. A Hanle effect, observed in the presence of small in-plane orthogonal fields, is shown to be quantitatively consistent with the presence of long-lived spin polarized quasi-particles. Our experiments show that the superconducting state can be significantly modified by small electric currents, much smaller than the critical current, which is potentially useful for devices involving superconducting qubits

    "Feed from the Service": Corruption and Coercion in the State-University Relations in Central Eurasia

    Get PDF
    Education in Central Eurasia has become one of the industries, most affected by corruption. Corruption in academia, including bribery, extortions, embezzlement, nepotism, fraud, cheating, and plagiarism, is reflected in the region’s media and addressed in few scholarly works. This paper considers corruption in higher education as a product of interrelations between the government and academia. A substantial block of literature considers excessive corruption as an indicator of a weak state. In contrast to standard interpretations, this paper argues that in non-democratic societies corruption is used on a systematic basis as a mechanism of direct and indirect administrative control over higher education institutions. Informal approval of corrupt activities in exchange for loyalty and compliance with the regime may be used in the countries of Central Eurasia for the purposes of political indoctrination. This paper presents the concept of corruption and coercion in the state-university relations in Central Eurasia and outlines the model which incorporates this concept and the “feed from the service” approach. It presents implications of this model for the state-university relations and the national educational systems in Central Eurasia in general and offers some suggestions on curbing corruption

    Critical Behavior of the Supersolid transition in Bose-Hubbard Models

    Full text link
    We study the phase transitions of interacting bosons at zero temperature between superfluid (SF) and supersolid (SS) states. The latter are characterized by simultaneous off-diagonal long-range order and broken translational symmetry. The critical phenomena is described by a long-wavelength effective action, derived on symmetry grounds and verified by explicit calculation. We consider two types of supersolid ordering: checkerboard (X) and collinear (C), which are the simplest cases arising in two dimensions on a square lattice. We find that the SF--CSS transition is in the three-dimensional XY universality class. The SF--XSS transition exhibits non-trivial new critical behavior, and appears, within a d=3ϵd=3-\epsilon expansion to be driven generically first order by fluctuations. However, within a one--loop calculation directly in d=2d=2 a strong coupling fixed point with striking ``non-Bose liquid'' behavior is found. At special isolated multi-critical points of particle-hole symmetry, the system falls into the 3d Ising universality class.Comment: RevTeX, 24 pages, 16 figures. Also available at http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm

    A Natural Supersymmetric Model with MeV Dark Matter

    Full text link
    It has previously been proposed that annihilating dark matter particles with MeV-scale masses could be responsible for the flux of 511 keV photons observed from the region of the Galactic Bulge. The conventional wisdom, however, is that it is very challenging to construct a viable particle physics model containing MeV dark matter. In this letter, we challenge this conclusion by describing a simple and natural supersymmetric model in which the lightest supersymmetric particle naturally has a MeV-scale mass and the other phenomenological properties required to generate the 511 keV emission. In particular, the small (\sim 10510^{-5}) effective couplings between dark matter and the Standard Model fermions required in this scenario naturally lead to radiative corrections that generate MeV-scale masses for both the dark matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru

    Yukawa Unified Supersymmetric SO(10) Model: Cosmology, Rare Decays and Collider Searches

    Full text link
    It has recently been pointed out that viable sparticle mass spectra can be generated in Yukawa unified SO(10) supersymmetric grand unified models consistent with radiative breaking of electroweak symmetry. Model solutions are obtained only if tanβ50\tan\beta \sim 50, μ<0\mu <0 and positive DD-term contributions to scalar masses from SO(10) gauge symmetry breaking are used. In this paper, we attempt to systematize the parameter space regions where solutions are obtained. We go on to calculate the relic density of neutralinos as a function of parameter space. No regions of the parameter space explored were actually cosmologically excluded, and very reasonable relic densities were found in much of parameter space. Direct neutralino detection rates could exceed 1 event/kg/day for a 73^{73}Ge detector, for low values of GUT scale gaugino mass m1/2m_{1/2}. We also calculate the branching fraction for bsγb\to s \gamma decays, and find that it is beyond the 95% CL experimental limits in much, but not all, of the parameter space regions explored. However, recent claims have been made that NLO effects can reverse the signs of certain amplitudes in the bsγb\to s\gamma calculation, leading to agreement between theory and experiment in Yukawa unified SUSY models. For the Fermilab Tevatron collider, significant regions of parameter space can be explored via bbˉAb\bar{b}A and bbˉHb\bar{b}H searches. There also exist some limited regions of parameter space where a trilepton signal can be seen at TeV33. Finally, there exist significant regions of parameter space where direct detection of bottom squark pair production can be made, especially for large negative values of the GUT parameter A0A_0.Comment: Added comparison to Blazek/Raby results and added Comments on de Boer et al. b->s gamma result

    Graphene and non-Abelian quantization

    Get PDF
    In this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian which reduces, in the large mass limit while keeping fixed the Fermi velocity, to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a ζ\zeta-function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum. PACS: 03.65.-w, 81.05.ue, 73.43.-fComment: 23 pages, 4 figures. Version to appear in the Journal of Physics A. The title has been changed into "Graphene and non-Abelian quantization". The motivation and presentation of the paper has been changed. An appendix and Section 6 on the evaluation of the Hall conductivity have been added. References adde
    corecore