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Abstract
In this paper, we employ a simple nonrelativistic model to describe the low
energy excitation of graphene. The model is based on a deformation of the
Heisenberg algebra which makes the commutator of momenta proportional to
the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian,
which reduces in the large mass limit while keeping the Fermi velocity fixed,
to the usual linear one employed to describe these excitations as massless
Dirac fermions. This model, extended to negative mass, allows us to reproduce
the leading terms in the low energy expansion of the dispersion relation for
both nearest and next-to-nearest-neighbor interactions. Taking into account the
contributions of both Dirac points, the resulting Hall conductivity, evaluated
with a ζ -function approach, is consistent with the anomalous integer quantum
Hall effect found in graphene. Moreover, when considered in first order
perturbation theory, it is shown that the next-to-leading term in the interaction
between nearest neighbor produces no modifications in the spectrum of the
model while an electric field perpendicular to the magnetic field produces just
a rigid shift of this spectrum.
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1. Introduction

Several theoretical ideas have produced a fruitful exchange of interpretations and methods
between fundamental physics and condensed matter theory, such as spontaneously broken
symmetry [1–4] or renormalization group methods [5–9].

The recent experimental construction of graphene [10] opens a new connection between
condensed matter and quantum field theory, since its low energy excitations can be represented
as massless planar fermions and described by means of a (pseudo) relativistic theory.

Gaphene (see [11, 12] and references therein) is a two-dimensional, one-atom-thick,
allotrope of carbon which has attracted great attention in the past few years. The carbon
atoms are arranged on a honeycomb structure made out of hexagons, a structure with a great
versatility. Carbon nanotubes, for example, can be obtained by rolling the graphene plane
along a given direction and reconnecting the carbon bonds at the boundaries, giving rise to
an essentially one-dimensional object. Also, the replacement of a hexagon by a pentagon in
this lattice introduces a positive curvature defect; this allows us to wrap-up graphene to give
fullerenes, molecules where carbon atoms are arranged on spherical structures. Note that the
accumulation of graphene layers, weakly coupled by van der Waals forces, constitute the
well-known graphite.

This peculiar material was theoretically predicted by Semenoff in 1984 [13] (see also
[14]) and experimentally produced in the lab in 2004 [10].

The electronic properties of graphene are the result of the sp2 hybridization between one
s and two p orbitals, which leads to a trigonal planar lattice with a σ bond between carbon
atoms separated by 1.42 Angstrom. This filled band gives the lattice its robustness. The third
p orbital of the carbon atom, oriented perpendicularly to the plane of the graphene, gives rise
to the π band through covalent bonds with neighboring atoms. Since this p orbital contributes
with only one electron, the π band is half-filled in neutral graphene.

The low energy excitations of graphene accept a description as states of chiral massless
Dirac fermions with a pseudo-relativistic linear dispersion relation, in which the speed of light
c is replaced by the Fermi velocity, vF ≈ 10−3c. Then, the Lagrangian describing these low
energy states in the presence of an electromagnetic field is similar to that of QED for massless
fermions, shearing therefore some of its peculiarities. In particular, when a magnetic field is
applied perpendicularly to the plane of graphene, an anomalous integer quantum Hall effect
[15, 16] takes place, which has been experimentally measured [17, 18].

It is not the goal of this paper to discuss the physics of graphene from first principles.
Rather, we will consider a simple effective non-relativistic Hamiltonian, suggested by a
particular deformation of the Heisenberg algebra (non-commutativity of momenta, consistent
with the introduction of an external constant non-Abelian magnetic field), which could be
useful to describe the low energy excitations produced by the dominant nearest and next-to-
nearest-neighbor interactions in graphene.

The non-commutativity of spacetime is an old idea [19], the first example of which
was probably discussed by Landau in 1930 [20]. It has been revived in recent years within
the context of string theory6 and since then, non-commutative field theories have attracted
much attention in various fields such as mathematics, theoretical physics [22–25] and
phenomenology [26].

The breaking of commutativity of the position operators and the representations of the
algebra of the non-commutative spacetime coordinates has been studied in [27]. The non-
commutativity in the momenta algebra we are interested in can be related to the deformation

6 The literature is vast in this field; for a general review, see [21].
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quantization of Poissonian structures developed in [28] and considered as a kind of magnetic
quantization [29, 30].

All this research has stimulated the construction of new models in quantum mechanics7,
which has opened new routes to explore, for example in superconductivity [6]. Also a massless
Dirac-like Hamiltonian in a generalized noncommutative space and its relation with graphene
has been considered in [31].

Recently, some models based on a kind of nonstandard deformation of the Heisenberg
algebra, which can be realized by shifting the dynamical variables with the spin, have been
studied in [32, 33]. In the following, we will consider a similar deformation, but concentrated
in the commutators among momenta, which can be interpreted as the introduction of a constant
non-Abelian magnetic field [34].

In the following section, we present the model and derive the Hamiltonian. In section 3,
we study the free case and in section 4, we introduce a constant magnetic field and solve the
corresponding Landau problem. In section 5, we apply our results to describe the low energy
states associated with the leading nearest and next-to-nearest interactions in graphene.

In section 6, we evaluate the associated Hall conductivity employing a ζ -function
approach, finding that the result is consistent with the anomalous integer quantum Hall
effect present in this material. In section 7, we are also able to show that the next-to-leading
(quadratic) term in the nearest-neighbor interaction does not change the spectrum at first
order in perturbation theory. In section 8, we comment on the case where crossed electric and
magnetic fields are present and, finally, in section 9 we establish our conclusions.

At the end of the paper, an appendix is dedicated to the Lagrangian of the model and
studies its symmetry, conserved current and the generating functional of Green’s functions.
It also comments on the weak field and gradient expansion of the generating functional, its
relation with the Hall conductivity and the topological considerations involved.

2. Deformation of the Heisenberg algebra

We consider particles leaving on a plane whose dynamical variables satisfy the deformed
Heisenberg algebra given by

[Xi, Xj] = 0, [Xi, Pj] = ıδi j, [Pi, Pj] = 2ıθ2²i j3σ3, i, j = 1, 2, (2.1)

where the momenta commutator is proportional to the pseudospin σ3 and θ is a parameter
with dimensions of momentum. (For convenience, we take ~ = 1 and return to full units when
necessary.)

Note that these particles are described by wavefunctions with two components, ψ = ¡
ϕ

χ

¢ ∈
L2(R

2) ⊗ C
2, and these operators have the structure of 2 × 2 matrices on C

2.
The deformed algebra in equation (2.1) can be realized by defining

Xi := xi ⊗ 12 Pi := pi ⊗ 12 + θ 1L2 ⊗ σi, (2.2)

with xi, i = 1, 2, the usual (commutative) coordinates on the plane and pi = −ı ∂i,
operators on L2(R

2), and σi, i = 1, 2, the first two Pauli matrices. We will also write
σ := ¡

1L2 ⊗ σ1, 1L2 ⊗ σ2
¢
. For notational convenience, from now on we will avoid the explicit

indication of the symbol ⊗, which can lead to no confusion.
Our aim is to consider the direct generalization of the Hamiltonian of a (nonrelativistic)

particle of charge e and mass m, minimally coupled to an external ((2+1)-dimensional)
electromagnetic field, {A0, A := (A1, A2)}, which is constructed by means of the replacements
xi → Xi, pi → Pi.

7 The literature is very extensive; a partial list can be found in the references of [33].
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For the time being, we make A0 = 0. Then,

H0 = (p − eA)2

2m
→ Hθ = (p − eA + θσ)2

2m
, (2.3)

where the electromagnetic field is taken in the Coulomb gauge, ∇ · A = 0.
The Hamiltonian can also be written as

H = (p − eA)2

2m
+ vF σ · (p − eA) , (2.4)

where we have defined the Fermi velocity

vF := θ

m
(2.5)

and subtracted the constant θ2/m.
In the m → ∞ limit, with fixed vF , the resulting linear Hamiltonian is appropriate

to describe the conducting effective particles in graphene around the Fermi points
[11–13, 15], which justify our proposal. Note that this limit does not correspond to a small but
rather to a large deformation of the commutator [P1, P2].

Note also that the modification of the Hamiltonian in equation (2.4) can also be interpreted
as the introduction of an SU (2) non-Abelian constant and uniform ‘magnetic’ field ∼ θ2.
Indeed, the SU (2) transformations relate both components of the wavefunctions, and the
commutator of covariant derivatives gives

[p1 − eA1 + θσ1, p2 − eA2 + θσ2] = ıe (∂1A2 − ∂2A1) + 2ıθ2σ3. (2.6)

In this sense, if we take a constant magnetic field B = (∂1A2 − ∂2A1), the system we are
considering is a kind of non-Abelian version of the Landau problem [34].

In the appendix, we describe the Lagrangian of this model, study its symmetry and
conserved current, and discuss the relation of the asymptotic expansion of its generating
functional with the Hall conductivity.

3. The free case

In this section, we consider the free case, with A = 0. The Hamiltonian reduces to

H = p2

2m
+ vF σ · p. (3.1)

We propose solutions of the form

ψk(x) = eık·xχ(k), (3.2)

with χ(k) ∈ C
2, which replaced in

[H − E (k)] ψk(x) = 0 (3.3)

leads to ½
k2

2m
+ vF σ · k − E (k)

¾
χ(k) = 0. (3.4)

Nontrivial solutions require

det

½
k2

2m
+ vF σ · k − E (k)

¾
= 0, (3.5)

which gives

vF
2 k2 =

·
E (k) − k2

2m

¸2

. (3.6)
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Figure 1. The dispersion relations for the two branches of solutions for the free case.

Then, we get the following dispersion relation (approximately linear for small |k|, see
figure 1):

E (k) = k2

2m
± vF |k| (3.7)

which, replaced in equation (3.4) for k 6= 0, shows that the pseudo-spinor χ(k) has definite
pseudo-helicity¡

σ · k̂
¢
χ±(k) = ±χ±(k). (3.8)

On the other hand, for k = 0, the two linearly independent vectors
¡1

0

¢
and

¡0
1

¢
are just

constants solutions with vanishing eigenvalue.
The Hamiltonian in equation (3.1) commutes with the effective angular momentum, the

generator of a U (1) symmetry,

J := −ı∂ϕ + 1
2 σ3, [H, J] = 0. (3.9)

Under a rotation on the plane, the wavefunction in equation (3.2) changes into

U (ϑ )ψ(x) := eı ϑ
2 σ3ψ(R(ϑ )−1x) = eık·(R(ϑ )−1x)eı ϑ

2 σ3χ(k). (3.10)

For ϑ = 2π , we have R(2π) = 13 and eıπσ3 = −12. So we get

U (2π)ψ(x) = −ψ(x). (3.11)

Therefore, these particles can be considered as fermions [11].

4. Constant magnetic field perpendicular to the plane

In this section, we consider the electromagnetic vector potential of a constant magnetic field
orthogonal to the plane

A = Bx1ê2 ⇒ ∂1A2 − ∂2A1 = B and ∇ · A = 0. (4.1)

In this case, the Hamiltonian can be written as

2mH = p1
2 + (p2 − eBx1)

2 + 2mvFσ1 p1 + 2mvFσ2 (p2 − eBx1) , (4.2)

5
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which clearly commutes with p2. This allows us to look for generalized eigenfunctions of the
form

ψ(x) = eıkx2

√
2π

8(x1), (4.3)

where 8 = ¡
ϕ

χ

¢
.

The eigenvalue equation for the Hamiltonian, (H − E )ψ = 0, reduces to the pair of
coupled differential equations("

p1
2 + (eB)2

µ
x1 − k

eB

¶2
#

− λ

)
ϕ = −2mvF

½
p1 + ıeB

µ
x1 − k

eB

¶¾
χ,

("
p1

2 + (eB)2

µ
x1 − k

eB

¶2
#

− λ

)
χ = −2mvF

½
p1 − ıeB

µ
x1 − k

eB

¶¾
ϕ,

(4.4)

with λ = 2mE .
At this point, it is convenient to change the remaining variable x1 in favor of q :=√|eB| ¡x1 − k

eB

¢
. So p1 = √|eB|p, with p := −ı ∂

∂q , and the system in equation (4.4) is written
as

{|eB|[p2 + q2] − λ}ϕ(q) = −2mvF

p
|eB| {p + ısgn(eB) q} χ(q),

{|eB|[p2 + q2] − λ}χ(q) = −2mvF

p
|eB| {p − ısgn(eB) q} ϕ(q).

(4.5)

For simplicity, in the following we will take eB > 0. The case eB < 0 can be obtained
from the previous one by simply interchanging the components of the solutions, ϕ(q) ↔ χ(q),
as can be easily seen from equation (4.5). So we consider

{eB[p2 + q2] − λ}
µ

ϕ(q)

χ(q)

¶
= −2mvF

√
eB {pσ1 − q σ2}

µ
ϕ(q)

χ(q)

¶
. (4.6)

The presence of twice the Hamiltonian of a harmonic oscillator of frequency 1 in the
brackets on the left-hand side of equations (4.6), operator with eigenfunctions φn(q) =
e−q2/2Hn(q) (Hn the Hermite polynomials) and eigenvalues 2n + 1, for n = 0, 1, . . ., suggests
that ϕ(q) ∼ φn(q) and χ(q) ∼ φn0 (q), for some n, n0. Moreover, since the Hermite functions
satisfy ½

φn
0(q) + qφn(q) = 2nφn−1(q)

φn
0(q) − qφn(q) = −φn+1(q),

(4.7)

one concludes that these solutions are of the form

ϕ(q) = c1φn+1(y), χ(q) = c2φn(q) (4.8)

for n = 0, 1, 2, . . ., with c1, c2 ∈ C. Replaced in equation (4.5), we get the homogeneous
system of algebraic equations

M

µ
c1

c2

¶
=

µ
0
0

¶
, (4.9)

with

M =
µ

eB(2n + 3) − λ ı2mvF

√
eB

−ı2mvF

√
eB(2n + 2) eB(2n + 1) − λ

¶
. (4.10)

The eigenvalues are determined by the condition

detM = [2eB(n + 1) − λ]2 − (eB)2 − 8m2vF
2eB(n + 1) = 0, (4.11)

which implies that

En,s = λn,s

2m
= (vF

√
eB)

1

z

h
n + 1 + s

2

p
1 + 8z2(n + 1)

i
, (4.12)
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with s = ±1 and

z := mvF√
eB

. (4.13)

Appropriately normalized, the generalized eigenfunctions are written as

ψk,n,s(x) = eıkx2

√
2π

Kn,s e− q2

2

⎛
⎝ Hn+1(q)

ı

2z
[1 − s

p
1 + 8z2(n + 1)]Hn(q)

⎞
⎠, (4.14)

where

Kn,s = 4
√

eB
2− n

2 −1

r³
s
2 +

p
1 + 8z2(n + 1)

´2
− 1

4

4
√

π
√

(n + 1)!
p

1 + 8z2(n + 1)
(4.15)

and

q =
√

eB

µ
x1 − k

eB

¶
. (4.16)

Indeed, taking into account the orthogonality relations for the Hermite functions, it can
be easily verified that

(ψk,n,s, ψk0,n0,s0 ) = δn,n0δs,s0δ(k − k0). (4.17)

Finally, note that there is another solution 80 of equation (4.6) whose components are
given by

ϕ(q) =
µ

eB

π

¶1/4

φ0(q), χ(q) = 0. (4.18)

Indeed, since H0(q) = 1, we have

(p − ıq)φ0(q) = −ı(∂q + q)e−q2/2 = 0 (4.19)

and equation (4.5) reduces to½
eB

m

1

2
[p2 + q2] − E0

¾
φ0(q) =

½
eB

m

1

2
− E0

¾
φ0(q) = 0. (4.20)

This implies that E0 = eB/2m, which is independent of vF .
One can also verify that

ψk,0(x) = eıkx2

√
2π

µ
eB

π

¶1/4 µ
φ0(q)

0

¶
(4.21)

satisfy

(ψk,n,s, ψk0,0) = 0, (ψk,0, ψk0,0) = δ(k − k0). (4.22)

As mentioned in section 2, these results can be interpreted as the solution of a non-Abelian
version of the Landau problem, in which we have also introduced a constant and uniform non-
Abelian magnetic field. Moreover, in the m → ∞ limit, these eigenfunctions are similar to
the solutions found [35] for the Dirac equation in a constant magnetic background.

Note that one can take appropriate linear combinations of the generalized eigenfunctions
in equations (4.14) and (4.21) so as to construct a manifestly complete set of generalized
vectors in our space,½

eıkx2

√
2π

φn(q)

µ
1
0

¶
,

eıkx2

√
2π

φn(q)

µ
0
1

¶
; k ∈ R, n = 0, 1, 2, . . .

¾
, (4.23)
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Figure 2. The energy levels En,s for negative mass, in units of vF
√

eB and for w = 100.

where φn(q) are the Hermite functions. Then, the set of generalized eigenvectors of H that we
found is also complete, which ensures that in our analysis we got the whole spectrum of the
Hamiltonian.

In the following, we consider the large-z (large-m) limit we are interested in8.
For z À 1, the energies are given by

En,s = vF

√
eB

½
s
p

2(n + 1) + (n + 1)

z
+ O(z−2)

¾
(4.27)

and the eigenfunctions reduce to

ψk,n,s(x) = eıkx2

√
2π

2− n
2 −1 e− q2

2

4
√

π
√

(n + 1)!

Ã
Hn+1(q) + O(z−1)

− ıs

2

p
8(n + 1) Hn(q) + O(z−1)

!
. (4.28)

Negative mass. Since we are interested in the description of low energy states and the
construction of the solutions of equation (4.4) is independent of the sign of m, we can explore
the behavior of the system for m < 0. Indeed, it is safe to change the sign of m in the solutions,
which corresponds to the replacement z → −w, with w = |m|vF/

√
eB > 0, in the last line in

equation (4.12) maintaining vF > 0. We get (see figure 2)

8 For z ¿ 1, we have equally spaced levels in each branch, with slightly different slopes,

En,s = eB

m

n³
n + 1 + s

2

´
+ 2sz2(n + 1) + O(z4)

o
. (4.24)

For the eigenfunctions, we get

ψk,n,+1(x) = eıkx2

√
2π

2− n
2 − 1

2

4
√

π
√

(n + 1)!
e− q2

2

Ã
[1 − z2(n + 1) + O(z4)]Hn+1(q)

[−2ız(n + 1) + 6ız3(n + 1)2 + O(z4)]Hn(q)

!
(4.25)

and

ψk,n,−1(x) = eıkx2

√
2π

2−n/2

4
√

π
√

n!
e− q2

2

⎛
⎜⎝ [z − 3z3(n + 1) + O(z5)]Hn+1(q)

ı

·
1 − z2(n + 1) + 11

2
z4(n + 1)2 + O(z5)

¸
Hn(q)

⎞
⎟⎠ . (4.26)

The z → 0-limit is consistent with the usual Landau level problem.
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En,s = − (vF

√
eB)

1

w

h
n + 1 + s

2

p
1 + 8w2(n + 1)

i
= (vF

√
eB)

½
−s

p
2(n + 1) − n + 1

w
+ O(w−2)

¾
. (4.29)

On the other hand9, E0 = −eB/2|m| < 0.

5. The relation with graphene

The structure of graphene [11] can be seen as a triangular lattice with a basis of two atoms per
unit cell. The lattice vectors are

a1 = 3

2
a

µ
1
1√
3

¶
, a2 = 3

2
a

µ
1
−1√

3

¶
, (5.1)

where a ≈ 1.42 Å is the lattice constant (distance between nearest-neighbor carbon atoms).
The vectors characterizing the reciprocal lattice (whose elementary cell is the Brillouin zone)
are given by

b1 = 2π

3a

µ
1√
3

¶
, b2 = 2π

3a

µ
1

−√
3

¶
. (5.2)

The superposed triangular lattices form a hexagonal honeycomb array of carbon atoms
where the nearest-neighbor vectors are

δ1 = a

2

µ
1√
3

¶
, δ2 = a

2

µ
1

−√
3

¶
, δ3 = a

µ−1
0

¶
. (5.3)

The tight-binding model for graphene, where it is assumed that electrons can only hop
to both nearest (hi, ji) and next-to-nearest (hhi, jii) neighbor atoms, is described by the
Hamiltonian [11]

H = −t
X
hi, ji

X
s=±

¡
a†

i,s b j,s + h.c.
¢ − t 0

X
hhi, jii

X
s=±

¡
a†

i,s a j,s + b†
i,s b j,s + h.c.

¢
, (5.4)

where t and t 0 are the hopping energies, a†
i,s and ai,s are the creation and annihilation operators

of electrons in the site i with spin s belonging to the triangular sublattice A, and similarly
for the sublattice B. By Fourier transforming these operators and diagonalizing the resulting
expression, one gets the band structure (dispersion relations) [11]

E±(k) = ±t
p

f (k) − t 0 [ f (k) − 3] (5.5)

with

f (k) = 3 + 4 cos

µ
3k1a

2

¶
cos

Ã√
3

2
k2a

!
+ 2 cos(

√
3k2a) > 0. (5.6)

The minima of f (k) in the Brillouin zone correspond to the Dirac points

K = 2π

3a

µ
1
1√
3

¶
, K0 = 2π

3a

µ
1
−1√

3

¶
, (5.7)

where f (K) = 0 = f (K0). Then, the bands corresponding to each sign in the dispersion
relations, equation (5.5), touch each other at the Dirac points. Note that these two independent
Dirac points have been chosen so that they are related by the reflection of k about the k1-axis
(k2 → −k2) [11].

9 Note that E0 → 0 for m → ∞. This is consistent with the well-known existence of zero modes in the spectrum of
massless Dirac fermions coupled to gauge fields, discussed in different contexts in [36], [37] and [38], for example.
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A series expansion of E±(k) around k = K leads to

Es(K + k) = s t
£

3
2 a|k| − 3

8 a2k2 sin(3θ )
¤ + t 0

£− 9
4 a2k2 + 3

¤ + O(|k|3), (5.8)

where tan(θ ) = k2/k1 and s = ±1.
The expansion around the second Fermi point, K0, leads to the same expression with k

reflected about the k1-axis. This corresponds to the change θ → −θ , which changes the sign
of the second term in the first bracket on the right-hand side of equation (5.8).

We now turn to the comparison with the model developed in the previous sections. From
equations (5.8) and (3.7), it is seen that we can identify vF ≡ 3

2 at. Moreover, the next-to-
nearest-neighbor contribution can be represented in our (free) model by the mass term through
the identification − 9

4 t 0a2 ≡ 1
2m , up to a rigid displacement of the spectrum in an energy 3t 0

(which can be subtracted to restore the particle–hole symmetry at linear order in |k|). This
means that we must consider a negative mass in our model, m = −2/(9t 0a2) < 0.10

On the other hand, the second (quadratic) term in the nearest-neighbor contribution
depends on the direction of k. We cannot reproduce this behavior within the framework of
our model since it is rotationally invariant. Rather, we must treat it as a perturbation on the
solutions we found for our model. This will be considered later.

Then, we will assume that the effective Hamiltonian for the low energy states of this
system around K in the presence of an electromagnetic field, HK, is obtained though minimal
coupling and coincides with the one given in equation (2.4).

Since the application of our model to graphene requires w ≈ 103 (see footnote 10), the
large w expansion in equation (4.29) gives a good description of the self-energies. So we get
for quasi-particle states

En,− = (vF

√
eB)

½p
2(n + 1) − n + 1

w
+ O(w−2)

¾
, (5.12)

and for hole states

En,+ = (vF

√
eB)

½
−
p

2(n + 1) − n + 1

w
+ O(w−2)

¾
. (5.13)

Moreover, there is an additional (hole) state at energy E0 = − vF
√

eB
2w

< 0, slightly below the
zero energy level (see equation (4.20)). Indeed, the difference in energy for the two first hole
states is vF

√
eB(

√
2 + O(w−1)).11

10 According to the values of these parameters reported in [11], we have

a = 1.42 Å, t = 2.8 eV, t 0 = 0.1 eV. (5.9)

Then,

vF = 600 km s−1, mc2 = −4.3 × 106 eV, (5.10)

or, in natural units (vF/c → vF , mc/~ → m),

vF = 2 × 10−3, m = −8.53 × 1013 m−1. (5.11)

This is a rather large value for the (negative) mass of the quasiparticles, since |m| ' 32.9 me. For example, for an

external magnetic field B = 10 Tesla, we get w = |m|c
~

vF
c

q
~

eB = 1385.
11 For w = 103 and B = 10 Tesla, we have in full units

vF
√

eB → ~c
vF

c

r
eB

~
= 4.87 × 10−2 eV. (5.14)

This leads to E0 = −2.43 × 10−5 eV and E0,+ = −6.89 × 10−2 eV.

10
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5.1. The second Fermi point contribution

As previously mentioned, the dispersion relations near the Fermi points are related by the
reflection of momenta about the k1-axis. Then, for the linear terms in the effective free
Hamiltonian describing the states around the second Fermi point, we can write [11]

vF (σ1 p1 − σ2 p2) = vF σ∗ · p = −σ2 (vF σ · p) σ2. (5.15)

Accordingly, we will assume that the effective Hamiltonian describing the quasi-particles
near the second Fermi point in our model, HK0 , can be obtained from HK through the
transformation

HK0 = −σ2HKσ2 = − (p − eA)2

2m
+ vF σ∗ · (p − eA). (5.16)

Note that both HK and HK0 are left invariants under time-reversal times parity
transformations, T P (see the discussion in [12] about the symmetries of this system). Indeed
[12],

(T P ) HK (T P )† = σ1HK
∗σ1 = σ1

(
(p − eA)2

2m
+ vF σ∗ · (p − eA)

)
σ1 = HK (5.17)

and similarly

(T P ) HK0 (T P )† = − σ2
∗ (T P ) HK (T P )† σ2

∗

= − σ2HKσ2 = HK0 . (5.18)

Evidently, the spectrum of HK0 is obtained from that of HK by a reflection about the
origin and its (generalized) eigenfunctions are just σ2 times those of HK. This interchanges
quasi-particles with holes. Indeed,

HK0 (σ2ψk,n,s) = −σ2(HKψk,n,s) = −En,s(σ2ψk,n,s). (5.19)

Moreover,

HK0 (σ2ψ0) = −σ2 (HKψ0) = −E0(σ2ψ0), (5.20)

with an energy E 0
0 = −E0 = vF

√
eB

2w
> 0. This state corresponds to a quasi-particle of energy

slightly above zero.
Therefore, taking into account the eigenstates of both HK and HK0 , we get, for quasi-

particles and for holes, an almost doubly degenerate spectrum, except for one state of quasi-
particle and one state of hole with energies near zero. For positive energy states, we have

En,− = (vF

√
eB)

½p
2(n + 1) − n + 1

w
+ O(w−2)

¾
,

−En,+ = (vF

√
eB)

½p
2(n + 1) + n + 1

w
+ O(w−2)

¾
,

(5.21)

where the gap between contiguous states is

4En = 2(vF

√
eB)

½
n + 1

w
+ O(w−2)

¾
. (5.22)

As we discuss in the next section, this spectrum reproduces qualitatively the anomalous
integer quantum Hall effect found in graphene [15–18], which shows a nonvanishing Hall
conductivity for a small (positive or negative) Fermi level.

11
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6. The Hall conductivity

As discussed in the appendix, the Hall conductivity has a topological character and can be
calculated from the weak field and gradient expansion of the effective action of the system.
However, since we know the exact eigenvalues of energy of our model, we will employ a more
direct evaluation method, based on the relation established between the conserved current and
the external electromagnetic field, equations (A.13) and (A.14).

For our purposes, it will be sufficient to consider the mean value of the density j0(x).
Then, as in the previous sections, we will take E = 0 and B 6= 0 perpendicular to the plane of
the system.

Let us start by writing down the partition function of the particles around one Fermi
point at inverse temperature β and chemical potential μ. It can be obtained through a Wick
rotation of the generating functional Z[A] (see equation (A.8)) to the 2+1 Euclidean space by
means of the replacements x0 = t → −ıτ , A0 → ıA3, maintaining the other coordinates and
components of the gauge field unaltered.

Since, in our case, A0 = 0 = A1, A2 = Bx1, from equations (A.1) and (A.8), this Wick
rotation leads to the partition function

Z(β, μ, B) :=
Z

Dψ†Dψ e
R β

0 dt
R

d2x ψ†{− ∂
∂τ

+μ−H}ψ, (6.1)

where H is HK (or HK0 ) and the functional integral is performed on the set of configurations
of the fermionic field which satisfy anti-periodic boundary conditions on [0, β]. Then,

∂ logZ
∂μ

(β,μ, B) =
Z β

0
dt

Z
d2xhψ†ψi

= β

Z
d2x

1

e
J0(β, μ, B) = β

Z
d2x

σxy

e
B, (6.2)

where we used equation (A.14).
Our goal is now to evaluate the partition function as the functional determinant

Z(β, μ, B) = Det(D), (6.3)

where D = − ∂
∂τ

+ μ − H is a differential operator defined on a domain of anti-periodic
functions of τ ∈ [0, β]. Even though D is not symmetric, since H does not depend on τ this
operator has a complete set of orthogonal generalized eigenfunctions constructed as

9l,k,n,s = 1√
β

e−ıωlτ ψk,n,s, 9l,k,0 = 1√
β

e−ıωlτ ψk,0, (6.4)

with l ∈ Z, k ∈ R, n = 0, 1, 2, . . ., s = ±1, and where the Matsubara frequencies

ωl = 2π

β

µ
l + 1

2

¶
, with ωl = −ω−l−1. (6.5)

Then, the eigenvalues of D are given by

D9l,k,n,s = λl,n,s9l,k,n,s, λl,n,s = ıωl + μ − En,s,

D9l,k,0 = λl,09l,k,0, λl,0 = ıωl + μ − E0,
(6.6)

where En,s and E0 are the eigenvalues of H, studied in the previous sections.
Note that λl,n,s and λl,0 are independent of k. Therefore, in evaluating Det(D) we will

forget about the index k and, at the end, take into account the degeneracy it introduces per unit
area, given by the number of flux quanta per unit area [39, 40], 1 = eB/2π (or 1 = eB/h in
full units).

12
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We define Det(D) as the (gauge invariant) ζ -function determinant [41, 42],

log Det(D) := − d

du
Tr

(µ
D

3

¶−u
)¯̄̄
¯̄
u→0

, (6.7)

where 3 is an arbitrary mass scale, the trace is evaluated for <(u) sufficiently large and u → 0
stands for the analytic continuation of its derivative to a neighborhood of u = 0. In our case,

logZ(β, μ, B) = − d

du

⎧⎨
⎩

X
l,n,s

µ
λl,n,s

3

¶−u

+
X

l

µ
λl,0

3

¶−u
⎫⎬
⎭

¯̄̄
¯̄̄
u→0

. (6.8)

Let us first consider the contribution of the second term on the right-hand side and evaluate
∞X

l=−∞

µ
λl,0

3

¶−u

=
∞X

l=0

µ
ıωl + μ − E0

3

¶−u

+
∞X

l=0

µ−ıωl + μ − E0

3

¶−u

, (6.9)

where we used the properties of the Matsubara frequencies stated in equation (6.5). We can
also write

∞X
l=−∞

µ
λl,0

3

¶−u

=
µ

2π

β3

¶−u
( ∞X

l=0

·
ı

µ
l + 1

2

¶
+ β

2π
(μ − E0)

¸−u

+
∞X

l=0

·
−ı

µ
l + 1

2

¶
+ β

2π
(μ − E0)

¸−u
)

. (6.10)

These series can be expressed in terms of the Hurwitz ζ -function [43, 44]. Taking into
account that this function has branch cut discontinuities in the complex plane of its second
argument running from 0 to −∞, we get

∞X
l=−∞

µ
λl,0

3

¶−u

=
µ

2π

β3

¶−u ½
e−ı π

2 uζ

µ
u,

1

2
+ e−ı π

2 sign(μ−E0 ) β

2π
|μ − E0|

¶

+ eı π
2 uζ

µ
u,

1

2
+ eı π

2 sign(μ−E0 ) β

2π
|μ − E0|

¶¾
. (6.11)

The expression in braces has a vanishing analytic continuation at u = 0. As a consequence,
the derivative of the right-hand side at u = 0 does not depend on the arbitrary scale 3. Then,
the contribution of this Landau level to log DetD per unit area and at low temperature is given
by [43, 44]

1

⎧⎨
⎩− d

du

∞X
l=−∞

µ
λl,0

3

¶−u
¯̄̄
¯̄
u→0

⎫⎬
⎭ = eB

2π

½
β (E0 − μ) 2 (E0 − μ) + o

µ
1

β |μ − E0|
¶¾

. (6.12)

Taking into account that we are interested in the mean number of particles with respect
to the neutral material (i.e. with all the Landau levels with negative energy filled, which
corresponds to μ = 0), from equation (6.2), we finally get for the contribution of the Landau
level with energy E0 to the Hall conductivity at zero temperature

B

e
σxy

¯̄̄
¯
E0

= Be

2π

(
∂

∂μ
[(E0 − μ) 2 (E0 − μ)] − ∂

∂μ
[(E0 − μ) 2 (E0 − μ)]

¯̄̄
¯
μ=0

)

= Be

2π
{−2 (E0 − μ) + 2 (E0)}

= Be

2π
{2(E0)2 (μ − E0) − 2 (−E0) 2 (E0 − μ)}. (6.13)
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Figure 3. The Hall conductivity for a realistic value of w = 103.

Therefore, for positive E0, we get a contribution (+ e2

2π
) to σxy if μ > E0 and zero otherwise.

On the other hand, for negative E0, we get a contribution (− e2

2π
) if μ < E0 and zero otherwise.

At this point, it is clear that a similar result is obtained for any other Landau level. Indeed,
the same considerations can be made for any other energy eigenvalue E . Then, for a given
chemical potential μ, there is only a finite number of nonvanishing contributions and the Hall
conductivity reduces to

σxy

¯̄
HK

= e2

2π

⎧⎨
⎩2(μ)

⎛
⎝ X

0<E<μ

1

⎞
⎠ − 2(−μ)

⎛
⎝ X

μ<E<0

1

⎞
⎠

⎫⎬
⎭ , (6.14)

where the sums run over the energy levels. Indeed, this is a rather general result for the Landau
problem of a fermionic system.

For the model of interest in this paper, the spectrum to be considered is the union of those
of HK and HK0 , E ∈ SpecHK

S
SpecHK0 , which takes into account the states around both

Fermi points. But they must be taken with an additional degeneracy corresponding to the two
polarizations of the electron spin, which has played no role up to now in this analysis.

In full units, we get

σxy = 2e2

h

⎧⎨
⎩2(μ)

⎛
⎝ X

0<E<μ

1

⎞
⎠ − 2(−μ)(

X
μ<E<0

1)

⎫⎬
⎭ . (6.15)

Note that ¯̄̄
¯ h

4e2
σxy

¯̄̄
¯ = 1

2
(6.16)

for small |μ| (but |μ| > |E0| = vF
√

eB
2w

). This is the characteristic of the anomalous integer
quantum Hall effect found in graphene [15–18], which shows a nonvanishing Hall conductivity
for small (positive or negative) Fermi level.

In figure 3, the Hall conductivity of this model as a function of μ (equal to the Fermi level
²F at zero temperature) has been plotted for w = 103. Note that it is not possible to appreciate
the structure of each step as a double step (due to the small degeneracy breaking remarked in
equations (5.21) and (5.22)) with such a realistic value of w (see figure 4). Also note that the
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Figure 4. The structure of the step in the Hall conductivity from 1
2 to 3

2 , with w = 103.

Hall conductivity of our model vanishes in a small neighborhood of the origin for |μ| < vF
√

eB
2w

.

7. Perturbation with the quadratic nearest-neighbor interaction term

Note that the quadratic term in the nearest-neighbor dispersion relation in equation (5.8) can
be obtained from the solutions of the free problem, equations (3.2) and (3.8), through the
(rotational symmetry breaking) perturbation

4H = −a

4
vF p2[4p1

2 − p2](p2)−1(σ · p). (7.1)

Indeed,

4H ψk(x) = −a

4
vF eık·x k2

£
4k1

2 − k2
¤
(k2)−1/2

¡
σ · k̂

¢
χs(k)

= −s
a

4
vF k2

£
4k1

2 − k2¤ (k2)−1/2 ψs(k) = −s
3

8
t a2k2 sin (3θ ) ψs(k). (7.2)

We will assume that in the presence of an electromagnetic field A, derivatives
change into covariant derivatives and the perturbation just turns into the Hermitian
expression

4H = −a

8
vF{(p2 − eA2)[4(p1 − eA1)

2 − (p − eA)2][(p − eA)2]−1σ · (p − eA)

+ σ · (p − eA) [(p − eA)2]−1[4(p1 − eA1)
2 − (p − eA)2](p2 − eA2)}. (7.3)

Note that there is an order indeterminacy in this definition. We will come back later to this
point.

We now consider a constant magnetic field as in equation (4.1). Then,

p1 − eA1 = p1 =
√

eB p, p2 − eA2 = p2 − eBx1 = −
√

eB q, (7.4)

and 4H reduces to

4H = H + H†, (7.5)

15



J. Phys. A: Math. Theor. 45 (2012) 135308 H Falomir et al

where

H = −a

8
vF

√
eB q[4p2 − (p2 + q2)][p2 + q2]−1[pσ1 − qσ2]. (7.6)

When H is applied to the functions in equation (4.14), taking into account that (see
equation (4.6))

[pσ1 − qσ2] ψk,n,s(x) = − 1

w

½
m

eB
En,s − 1

2

¡
p2 + q2

¢¾
ψk,n,s(x), (7.7)

where En,s is given in equation (4.29), we get

Hψk,n,s(x) = a

8
vF

√
eB

Kn,s

w

eıkx2

√
2π

q e− q2

2

×

⎛
⎜⎜⎜⎝

©
m
eB En,s − 1

2 (2n + 3)
ª

[2n + 3]

£
4q2 − 3(2n + 3)

¤
Hn+1(q)

−ı

"
1 − s

p
1 + 8w2(n + 1)

2w

# ©
m
eB En,s − 1

2 (2n + 1)
ª

[2n + 1]

£
4q2 − 3(2n + 1)

¤
Hn(q)

⎞
⎟⎟⎟⎠.

(7.8)

The first order perturbations on the eigenvalues of the Hamiltonian are given by the matrix
elements

(ψk0,n,s,4Hψk,n,s) = ¡
ψk0,n,s,Hψk,n,s

¢ + ¡
Hψk0,n,s, ψk,n,s

¢
= δ(k − k0) a vF

√
eB

Kn,s
2

w

×
Z ∞

−∞
dq eq2

q

(©
m
eB En,s − 1

2 (2n + 3)
ª

[2n + 3]
[4q2 − 3(2n + 3)]Hn+1

2(q)

+
"

1 − s
p

1 + 8w2(n + 1)

2w

#2 ©
m
eB En,s − 1

2 (2n + 1)
ª

[2n + 1]
[4q2 − 3(2n + 1)]Hn

2(q)

⎫⎬
⎭ = 0,

(7.9)

since it is the integral on the whole line of an odd function of q.
As previously noted, there is an order indeterminacy in the expression of H in equation

(7.6), since the operators on the right-hand side of equation (7.1) commute. But any order one
chooses will lead to an odd in q integrand in the expression of (ψk0,n,s,4Hψk,n,s), giving then
a vanishing result.

It is also immediate to show that Hψ0 = 0, with ψ0 given in equation (4.21).
Therefore, we get no modification of the energy eigenvalues at first order in perturbation

theory with 4H in equation (7.3) (or with any permutation of the factors in H in equation
(7.6)). This means that, in the presence of a constant magnetic field orthogonal to the plane,
the spectrum of the Hamiltonian of our model seems to be rather stable against the rotational
symmetry breaking perturbation in equation (7.5).

In particular, the Hall conductivity of the model described in section 6 and the explanation
of the anomalous integer quantum Hall effect based on it is not modified by the first order
perturbation theory in 4H, operator which incorporates the (next to leading) quadratic term
in the nearest-neighbor interactions.
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8. Crossed magnetic and electric fields

Let us also consider an electric field in the direction of x1. So we can take the electromagnetic
field Aμ as

A := Bx1 ê2, A0 := −Ex1, (8.1)

also in the Coulomb gauge.
In this case, the Hamiltonian is

H = (p − eA)2

2m
+ vF σ · (p − eA) − eA0. (8.2)

In the m → ∞ limit, a pseudo-Lorentz transformation of the linear Hamiltonian allows us to
solve the eigenvalue equation for crossed electric and magnetic fields in terms of the solutions
of the case in which there is only a magnetic field applied perpendicularly to the plane of
graphene [45–47]. But, in this nonrelativistic model, the quadratic mass term prevents us to
get the solution in this way.

Translation invariance in the x2 direction suggests that the solutions are again of the form
9(x) = eıkx2√

2π

¡
ϕ(x1)

χ(x1 )

¢
, and the eigenvalue equation reduces to("

p1
2 + (eB)2

µ
x1 − k

eB

¶2
#

− λ + 2meEx1

)
ϕ = −2mvF

½
p1 + ıeB

µ
x1 − k

eB

¶¾
χ,

("
p1

2 + (eB)2

µ
x1 − k

eB

¶2
#

− λ + 2meEx1

)
χ = −2mvF

½
p1 − ıeB

µ
x1 − k

eB

¶¾
ϕ,

(8.3)

with λ = 2mE .
It is convenient to define a new variable as q := √

eB
£
x1 − k

eB + mE
eB2

¤
and,

correspondingly, p := −ı ∂
∂q = ¡ −ı√

eB

¢
∂

∂x1
, in terms of which the eigenvalue equation is written

as ½
p2 + q2 − 3

eB

¾
ϕ(q) = 2w

½
[p + ıq] + ıw

E

vF B

¾
χ(q),½

p2 + q2 − 3

eB

¾
χ(q) = 2w

½
[p − ıq] − ıw

E

vF B

¾
ϕ(q),

(8.4)

where

3 := λ + mE

B

·
mE

B
− 2k

¸
(8.5)

with λ = 2mE .
For small electric fields, the last terms on the right-hand sides of equation (8.4) can be

treated as the perturbation
¡

w2E
mvF B

¢
σ2 on a zero order Hamiltonian whose solutions are the

same functions of q as in section 4, with the equilibrium position of the oscillator in the
x1-direction displaced by an amount

¡− mE
eB2

¢
. The zero-order energy eigenvalues are then those

of section 4 but shifted by an amount E
B

£
k − mE

2B

¤
.

On the other hand, since the perturbation is proportional to σ2, it has a
vanishing mean value due to the orthogonality of Hermite functions (see equation
(4.14)). Then, the spectrum is just rigidly shifted by the presence of an electric field
perpendicular to the magnetic field, up to first order in perturbation theory in the small
parameter (E/vF B).
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9. Conclusions and outlook

In this paper, we have studied a simple nonrelativistic model, suggested by a non-Abelian
magnetic quantization approach (based on a Heisenberg algebra deformed by the introduction
of an external constant non-Abelian magnetic field), to describe the low energy excitations of
graphene. As previously mentioned, these states admit an effective description as excitations
of a (2+1)-dimensional pseudo-relativistic field theory of massless Dirac fermions.

Our effective model is based on a deformation of the Heisenberg algebra which makes
the commutator of momenta proportional to the pseudo-spin. This can be interpreted as
the commutator of two U (2) covariant derivatives in the case of a constant background
non-Abelian magnetic field. The modification introduced in the Heisenberg algebra leads to
wavefunctions of two components and a Hamiltoninan operator in the form of a 2 × 2 matrix,
which reduces to the usually considered linear one in the large mass limit.

We have solved the Landau problem for this planar system, with a constant and
uniform magnetic field applied perpendicularly to the plane, explicitly obtaining the
Hamiltonian (generalized) eigenfunctions and eigenvalues. We have pointed out that this
construction can be directly extended to the case of negative values of the mass parameter.
This is important since a negative mass allows us to reproduce with our Hamiltonian
the low energy expansion of the dispersion relation around the first Dirac point of
graphene, K, when the leading order terms from both nearest and next-to-nearest-neighbor
interactions (linear and quadratic terms in the quasi-momentum expansion, respectively) are
retained.

The effective Hamiltonian for the excitations around the second Fermi point, HK0 , is
proposed to be obtained from HK through a transformation which maintains the Hamiltonian
time reversal times parity invariant.

Through this transformation, the spectrum of the low energy states for the second Dirac
point K0 is simply obtained from that of K by a reflection around the origin. This leads to
an almost doubly degenerate spectrum for quasi-particles and holes, where the degeneracy
is broken by O(w−1) terms, with w = |m|vF√

eB
' 103 for realistic values of the parameters.

Moreover, there is one quasi-particle state of energy E 0
0 = eB/2|m| and one hole state of

energy E0 = −eB/2|m|.
The |m| → ∞ limit reproduces the well-known doubly degenerate spectrum of massless

Dirac fermions, with one quasi-particle zero mode and one hole zero mode.
The Hall conductivity of the model has been evaluated from the partition function

employing the ζ -function approach to the associated functional determinant. This led us
to a rather general expression valid for the Landau problem of a fermionic theory. In the case
under study, the result is consistent with the anomalous integer quantum Hall effect found in
graphene, in which the (reduced) Hall conductivity as a function of the Fermi energy takes
half-integer values (see figure 3). In particular, h

4e2 σxy = ± 1
2 for small (but |²F | > vF

√
eB

2w
)

positive or negative Fermi level, respectively.
Moreover, we have proposed an additional rotational symmetry breaking term to be treated

as a perturbation on the Hamiltonian, which reproduces the next-to-leading (quadratic) term in
the nearest-neighbor interaction contribution to the dispersion relation with no external field.
With the perpendicular magnetic field present, we have shown that this term does not modify
the spectrum at first order in perturbation theory. Neither does it change the behavior of the
Hall conductivity described above.

Finally, we have shown that an electric field perpendicular to the magnetic
field produces just a rigid shift of the spectrum at first order in perturbation
theory.
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An interesting problem under study refers to the case in which an Aharonov–Bohm
singular flux is also present, which can simulate a defect in the lattice. This will be the subject
of a forthcoming paper.

Acknowledgments

This work was supported in part by grants from CONICET (PIP 01787), ANPCyT (PICT
00909) and UNLP (Proy. 11/X492), Argentina, and from FONDECYT (grants 1095217
and 1095106) and Proyecto Anillos ACT119, Chile. MN also acknowledges support from
Universidad Nacional de La Plata, Argentina. We acknowledge E M Santangelo and C G
Beneventano for useful discussions.

Appendix. Lagrangian, conserved current and generating functional

In this appendix, we construct the Lagrangian for our model and deduce the conserved current
associated with its U (1) gauge symmetry. We also discuss the behavior of the generating
functional in relation with the Hall conductivity.

The system under consideration can be described by the Lagrangian

L := ı

2
[ψ† ∂tψ − ∂tψ

† ψ] + ψ†eA0ψ

− 1

2m
{[(p − eA + θσ) ψ]† · [(p − eA + θσ) ψ] − 2θ2ψ†ψ}. (A.1)

The variation of the independent dynamical variables ψ† and ψ leads to the Euler–
Lagrange equations in the usual way:

∂L
∂ψ†

− ∂t

Ã
∂L

∂
¡
∂tψ†

¢
!

− ∇ ·
µ

∂L
∂(∇ψ†)

¶
= ı∂tψ − 1

2m
[(p − eA + θσ)2 − 2θ2]ψ = 0,

(A.2)

and similarly for ψ .
The Lagrangian in equation (A.1) has a U (1) gauge symmetry. Indeed, it remains invariant

against the following local change in the dynamical variables and the electromagnetic field

ψ(x) → eıeα(x)ψ(x) ⇒ δψ(x) = ıeα(x)ψ(x),

ψ†(x) → ψ†(x)e−ıeα(x) ⇒ δψ†(x) = −ıeα(x)ψ†(x),

Aμ(x) → Aμ(x) + ∂μα(x).

(A.3)

Then, Nœther’s theorem implies the existence of a locally conserved current given by

α jμ := −δψ†

Ã
∂L

∂
¡
∂μψ†

¢
!

−
Ã

∂L
∂
¡
∂μψ

¢
!

δψ. (A.4)

Therefore, the charge density is

j0 = e ψ†ψ (A.5)

and the current density

j = e

2m
{ı(∇ψ† ψ − ψ† ∇ψ) + 2ψ†(−eA + θσ)ψ}. (A.6)

It is a simple exercise to verify that jμ is conserved as a consequence of the equations of
motion, equation (A.2), and its complex conjugate,

∂t j0 − ∇ · j = 0. (A.7)
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The generating functional of (current) Green’s functions of this two-dimensional system
reads as

Z[A] = eı0[A] :=
Z

Dψ†Dψ eı
R

dt
R

d2xL(x), (A.8)

where 0[A] is the effective action. In particular, we have

− ı
δ log Z[A]

δAμ(x)
= h jμ(x)i = Jμ(x) (A.9)

and the second functional derivative gives minus the current–current correlation function.
For a system with a gap in its spectrum (as is the case of our model with filled Landau

levels), the effective action is a local gauge invariant functional of the electromagnetic external
field [39, 40],

0[A] =
Z

dt
Z

d2xLeff(Aμ(x), ∂νAμ(x), . . .). (A.10)

In general, in an asymptotic weak field and weak gradient expansion, gauge invariance
determines that the effective Lagrangian Leff appears as an expansion in terms of the field
intensities E and B and its derivatives. But in 2+1 dimensions, there is an additional possibility,
since a Chern–Simons term can be the dominant one in this expansion (see, for example, [39,
40] and references therein):

Leff = K

4π
²μνλAμ∂νAλ − 1

2
Eiρ

i jE j − 1

2
χB2 + · · · , (A.11)

where ²μνλ is the completely anti-symmetric tensor with ²012 = 1 and the ellipses represent
higher order terms.

In fact, it is the Chern–Simons term which determines the Hall conductivity since

Jμ(x) = δ0[A]

δAμ(x)
= K

2π
²μνλ∂νAλ + . . . = K

4π
²μνλFνλ + · · · . (A.12)

In particular, for the spatial and temporal components of the current, the previous expression
reduces to

Ji(x) = K

2π
²0i jE j + · · · , J0(x) = K

2π
B + · · · . (A.13)

The first equation in (A.13) implies that the Hall conductivity σxy = K
2π

(or σxy = Ke2/h in
full units). Then,

J0 = σxyB. (A.14)

It can be shown that K takes integer values if the (many-body) ground state is not
degenerate and has a finite energy gap [39, 40, 47]. In this case, K has a topological character:
it can be related to a Berry phase which, in turn, takes the value 2π times an (integer) Chern
number.
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