996 research outputs found

    Fetal Tissue Transplantation: Regulating the Medical Hope for the Future

    Get PDF
    While fetal tissue implants have the potential to offer relief to several million Americans, these two scenarios are examples of the many legal and ethical issues surrounding the technology. Currently, the use of fetal tissue is loosely regulated by an assortment of laws, many of which were enacted before the therapeutic use of fetal tissue was even conceived as a possibility. At the time many of the regulations governing fetal tissue use were developed, the primary goal of the regualtions was to prevent the exploitation and sale of aborted fetuses following the Supreme Court\u27s decision in Roe v. Wade. Had current technology been foreseen, different regulations certainly would have been proposed. The purpose of this note is to examine the various legal and ethical issues raised by fetal tissue transplantation and to suggest regulations resolving these issues. Included in this discussion will be an analysis of possible constitutional challenges to these regulations

    Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Get PDF
    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation

    Kalman Filtering of Angular-Momentum-Based Attitude Parameters

    Get PDF
    This paper presents an extended Kalman filter using an attitude parameterization that is advantageous for attitude estimation of spinning spacecraft. The parameters are the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. To avoid the singularity of the 7x7 covariance of this state vector arising from the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames, the Kalman filter employs the nonsingular 6x6 covariance of a reduced error state. Three of the components of this six-component error state are the usual infinitesimal attitude error angles, so the usual 3x3 attitude covariance matrix is a submatrix of the 6x6 covariance. The performance of the resulting filter is compared with that of a quaternion-based filter

    Kalman Filter for Spinning Spacecraft Attitude Estimation

    Get PDF
    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented

    Coherent Pion Radiation From Nucleon Antinucleon Annihilation

    Full text link
    A unified picture of nucleon antinucleon annihilation into pions emerges from a classical description of the pion wave produced in annihilation and the subsequent quantization of that wave as a coherent state. When the constraints of energy-momentum and iso-spin conservation are imposed on the coherent state, the pion number distribution and charge ratios are found to be in excellent agreement with experiment.Comment: LaTex, 8 text pages, 1 PostScript figure, PSI-PR-93-2

    Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors

    Get PDF
    Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electron spin relaxation in these materials

    Combining genetic resources and elite material populations to improve the accuracy of genomic prediction in apple

    Get PDF
    Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e., genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation

    Coherent state formulation of pion radiation from nucleon antinucleon annihilation

    Full text link
    We assume that nucleon antinucleon annihilation is a fast process leading to a classical coherent pion pulse. We develop the quantum description of such pion waves based on the method of coherent states. We study the consequences of such a description for averages of charge types and moments of distributions of pion momenta with iso-spin and four-momentum conservation taken into account. We briefly discuss the applicability of our method to annihilation at rest, where we find agreement with experiment, and suggest other avenues for its use.Comment: 24 pages, 3 figures, 1 table, PSI-preprin
    • …
    corecore