109 research outputs found

    Prognostic role of KRAS mutations in Sardinian patients with colorectal carcinoma

    Get PDF
    The presence of mutations in the KRAS gene is a predictor of a poor clinical response to EGFR-targeted agents in patients affected by colorectal cancer (CRC), but its significance as a global prognostic factor remains unclear. The aim of the present study was to evaluate the impact of the KRAS mutational status on time to first metastasis (TTM) and overall survival (OS) in a cohort of Sardinian CRC patients. A total of 551 patients with metastatic CRC at the time of enrolment were included. Clinical and pathological features of the disease, including follow-up information, were obtained from medical records and cancer registry data. For mutational analysis formalin-fixed paraffin-embedded tissue samples were processed using a standard protocol. The coding sequence and splice junctions of exons 2 and 3 of the KRAS gene were screened for mutations by direct automated sequencing. Overall, 186 KRAS mutations were detected in 183/551 (33%) patients: 125 (67%) were located in codon 12, 36 (19%) in codon 13, and 18 (10%) in codon 61. The remaining mutations (7; 4%) were detected in uncommonly-affected codons. No significant correlation between KRAS mutations and gender, age, anatomical location and stage of the disease at the time of diagnosis was identified. Furthermore, no prognostic value of KRAS mutations was found considering either TTM or OS. When patients were stratified by KRAS mutational status and gender, males were significantly associated with a longer TTM. The results of the present study indicate that KRAS mutation correlated with a slower metastatic progression in males with CRC from Sardinia, irrespective of the age at diagnosis and the codon of the mutatio

    Quantifying Dispersal of European Culicoides (Diptera: Ceratopogonidae) Vectors between Farms Using a Novel Mark-Release-Recapture Technique

    Get PDF
    Studying the dispersal of small flying insects such as Culicoides constitutes a great challenge due to huge population sizes and lack of a method to efficiently mark and objectively detect many specimens at a time. We here describe a novel mark-release-recapture method for Culicoides in the field using fluorescein isothiocyanate (FITC) as marking agent without anaesthesia. Using a plate scanner, this detection technique can be used to analyse thousands of individual Culicoides specimens per day at a reasonable cost. We marked and released an estimated 853 specimens of the Pulicaris group and 607 specimens of the Obsoletus group on a cattle farm in Denmark. An estimated 9,090 (8,918-9,260) Obsoletus group specimens and 14,272 (14,194-14,448) Pulicaris group specimens were captured in the surroundings and subsequently analysed. Two (0.3%) Obsoletus group specimens and 28 (4.6%) Pulicaris group specimens were recaptured. The two recaptured Obsoletus group specimens were caught at the release point on the night following release. Eight (29%) of the recaptured Pulicaris group specimens were caught at a pig farm 1,750 m upwind from the release point. Five of these were recaptured on the night following release and the three other were recaptured on the second night after release. This is the first time that movement of Culicoides vectors between farms in Europe has been directly quantified. The findings suggest an extensive and rapid exchange of disease vectors between farms. Rapid movement of vectors between neighboring farms may explain the the high rate of spatial spread of Schmallenberg and bluetongue virus (BTV) in northern Europe

    Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale

    Get PDF
    BACKGROUND: Biting midges, Culicoides, of the Obsoletus group and the Pulicaris group have been involved in recent outbreaks of bluetongue virus and the former was also involved in the Schmallenberg virus outbreak in northern Europe. METHODS: For the first time, here we investigate the local abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non-spatial covariates expected to affect Culicoides abundance. RESULTS: The distance to sheep penned in the corner of the study field significantly increased the abundance level up to 200 meters away from the sheep. Spatial clustering was found to be significant but could not be explained by any known factors, and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant with a peak at just below 16 degrees Celcius. Surprisingly, there was a significant positive impact of wind speed. The CAR model for the Pulicaris group also identified a significant attraction to the smaller groups of sheep placed in the field. Furthermore, a large number of spatial covariates which were incorrectly found to be significant in ordinary regression models were not significant in the CAR models. The 95% C.I. on the prediction estimates ranged from 20.4% to 304.8%, underlining the difficulties of predicting the abundance of Culicoides. CONCLUSIONS: We found that significant spatial clusters of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared to the rest of the field

    Assessing the potential for Bluetongue virus 8 to spread and vaccination strategies in Scotland

    Get PDF
    Europe has seen frequent outbreaks of Bluetongue (BT) disease since 2006, including an outbreak of BT virus serotype 8 in central France during 2015 that has continued to spread in Europe during 2016. Thus, assessing the potential for BTv-8 spread and determining the optimal deployment of vaccination is critical for contingency planning. We developed a spatially explicit mathematical model of BTv-8 spread in Scotland and explored the sensitivity of transmission to key disease spread parameters for which detailed empirical data is lacking. With parameters at mean values, there is little spread of BTv-8 in Scotland. However, under a “worst case” but still feasible scenario with parameters at the limits of their ranges and temperatures 1 °C warmer than the mean, we find extensive spread with 203,000 sheep infected given virus introduction to the south of Scotland between mid-May and mid-June. Strategically targeted vaccine interventions can greatly reduce BT spread. Specifically, despite BT having most clinical impact in sheep, we show that vaccination can have the greatest impact on reducing BTv infections in sheep when administered to cattle, which has implications for disease control policy

    Contrasting Population Structures of Two Vectors of African Trypanosomoses in Burkina Faso: Consequences for Control

    Get PDF
    Tsetse flies are insects that transmit trypanosomes to humans (sleeping sickness) and animals (nagana). Controlling these vectors is a very efficient way to control these diseases. In Burkina Faso, a tsetse eradication campaign is presently targeting the northern part of the Mouhoun River Basin. To attain this objective, the approach has to be area-wide, i.e. the control effort targets an entire pest population within a circumscribed area. To assess the level of this isolation, we studied the genetic structure of Glossina palpalis gambiensis and Glossina tachinoides populations in the target area and in the adjacent river basins of the Comoé, the Niger and the Sissili River Basins. Our results suggest an absence of strong genetic isolation of the target populations. We therefore recommend establishing permanent buffer zones between the Mouhoun and the other river basin(s) to prevent reinvasion. This kind of study may be extended to other areas on other tsetse species

    Impact of temperature, feeding preference and vaccination on Schmallenberg virus transmission in Scotland

    Get PDF
    First identified in 2011, Schmallenberg virus (SBV) is principally transmitted by Culicoides midges and affects ruminants. Clinical presentation is typified by foetal abnormalities, but despite very high infection rates, relatively few animals present with clinical signs. In this paper we further develop a previously published stochastic mathematical model of SBV spread to investigate the optimal deployment of a vaccine for SBV in Scotland, a country that has experienced only sporadic and isolated cases of SBV.We consider the use of the vaccine under different temperatures and explore the effects of a vector preference for feeding on cattle. We demonstrate that vaccine impact is optimised by targeting it at the high risk areas in the south of Scotland, or vaccinating only cattle. At higher than average temperatures, and hence increased transmission potential, the relative impact of vaccination is considerably enhanced. Vaccine impact is also enhanced if vectors feed preferentially on cattle. These findings are of considerable importance when planning control strategies for SBV and also have important implications for management of other arboviruses such as Bluetongue virus. Environmental determinants and feeding preferences should be researched further to inform development of effective control strategies

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock

    Get PDF
    The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not
    corecore