73 research outputs found

    Independent and combined effects of egg pro- and anti-oxidants on gull chick phenotype

    Get PDF
    Oviparous mothers transfer to their eggs components that have both independent and combined effects on offspring phenotype. The functional interaction between egg components, such as antioxidants and hormones, suggests that a change in the concentration of one component will have effects on offspring traits that depend on the concentration of other interacting components. However, the combined effects of variation in different egg components are virtually unknown. Bird eggs contain vitamin E, a major antioxidant, and also maternal corticosterone. The independent consequences of variation in the egg concentrations of these compounds for offspring phenotype are largely unknown and no study has investigated their combined effects. We manipulated the concentration of vitamin E and corticosterone in the eggs of the yellow-legged gull (Larus michahellis) by administering a physiological (2 s.d.) dose both independently and in combination. We tested for an effect on chick post-natal growth, plasma antioxidant capacity (TAC) and oxidative compounds (TOS). Separate administration of vitamin E or corticosterone caused a reduction in body mass relative to controls, whereas the combined administration of the two compounds reversed their negative effects. These results suggest that maternal egg components, such as antioxidants and steroid hormones, interact and mothers must balance their concentrations in order to achieve optimal offspring phenotype. The functional relationship between vitamin E and corticosterone is corroborated by the observation of positive covariation between these compounds

    The Mitogenome Relationships and Phylogeography of Barn Swallows (Hirundo rustica)

    Get PDF
    The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51kya, into the Americas, from where a relatively recent (<20kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r.Transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife

    The era of reference genomes in conservation genomics

    Get PDF

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio
    corecore