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Abstract 

We investigate the management of a merchant wind energy farm co‐located with a grid‐level storage 

facility and connected to a market through a transmission line. We formulate this problem as a Markov 

decision process (MDP) with stochastic wind speed and electricity prices. Consistent with most 

deregulated electricity markets, our model allows these prices to be negative. As this feature makes it 

difficult to characterize any optimal policy of our MDP, we show the optimality of a stage‐ and partial‐

state‐dependent‐threshold policy when prices can only be positive. We extend this structure when prices 

can also be negative to develop heuristic one (H1) that approximately solves a stochastic dynamic 

program. We then simplify H1 to obtain heuristic two (H2) that relies on a price‐dependent‐threshold 

policy and derivative‐free deterministic optimization embedded within a Monte Carlo simulation of the 

random processes of our MDP. We conduct an extensive and data‐calibrated numerical study to assess the 

performance of these heuristics and variants of known ones against the optimal policy, as well as to 

quantify the effect of negative prices on the value added by and environmental benefit of storage. We find 

that (i) H1 computes an optimal policy and on average is about 17 times faster to execute than directly 

obtaining an optimal policy; (ii) H2 has a near optimal policy (with a 2.86% average optimality gap), 

exhibits a two orders of magnitude average speed advantage over H1, and outperforms the remaining 

considered heuristics; (iii) storage brings in more value but its environmental benefit falls as negative 

electricity prices occur more frequently in our model. 

 

Keywords 

Markov decision process, wind-based electricity generation, energy storage, negative electricity prices, 

real options 
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1 Introduction 

The last fifteen years have seen a boom in global wind‐based electricity production—in the United States 

(US) alone wind generation capacity has grown more than eightyfold from 2000 to 2015 (Wiser and 

Bolinger 2015). This global trend will probably continue, as many countries have enacted policies to 

promote wind energy (REN21 2010). For example, the US recently renewed its Federal Renewable 

Energy Production Tax Credit through 2019 (DOE 2017). To support this projected growth, wind farm 

merchants have been considering co‐locating electricity generation and grid‐scale storage facilities, such 

as industrial batteries. An example of such a system is the demonstration project developed by the AES 

Corporation in West Virginia, where a 32 megawatt (MW) lithium‐ion battery supports a wind farm of 98 

MW (Sustainable Business News 2014). 

Co‐location of grid‐level storage with a merchant wind energy farm can create value by (i) stockpiling 

production that exceeds the capacity of the transmission lines that connect (typically remote) such farms 

to electricity markets; (ii) time‐shifting sales when electricity prices are low or even negative (a unique 

feature of many electricity markets, discussed below); and (iii) enabling the purchase of electricity for 

future resale. Storage may also benefit the environment by reducing the curtailment of wind energy, 

which is a significant issue; e.g., the lack of transmission capacity decreased the generation of wind 

energy by 17% in the Electric Reliability Council of Texas (ERCOT) in 2009 (Wiser and Bolinger 2015) 

and by more than 10% in China during the 2014–2015 time span (The Economist 2015). 

Claiming the potential value created by grid‐level storage for wind farms requires developing effective 

operating policies. Unfortunately, the presence of negative electricity prices complicates the management 

of wind‐energy‐production, storage, and transmission (WST) systems. For example, even in the absence 

of generation, when negative prices are possible the optimal policy for the merchant management of 

electricity storage is known only in the restricted case of fast storage with abundant transmission capacity 

(Zhou et al. 2016). Though still infrequent in most power markets, negative prices have been observed in 

the markets run by the New York Independent System Operator (NYISO 2013) and ERCOT 

(ERCOT 2012, Huntowski et al. 2012), as well as the Nordic Power Exchange (Sewalt and De 

Jong 2003) and the European Energy Exchange (Fanone et al. 2013, Genoese et al. 2010). One potential 

cause of such prices is the high costs of ramping conventional power plants up or down: Plant operators 

may try to avoid these expenses by paying others to consume their excess power (Genoese et al. 2010, 

Knittel and Roberts 2005, Sewalt and De Jong 2003). 

In this study, we develop and evaluate heuristics for operating a WST system in the presence of negative 

prices and examine the effect of such prices on the value added by and environmental benefit of storage. 

Specifically, we model a WST system as a finite‐horizon Markov decision process (MDP) with stochastic 



 

3 

 

 

wind availability and electricity prices. In contrast to the difficulty of characterizing any optimal policy of 

our MDP when prices can be negative, which forces us to rely on stochastic dynamic programming for 

computing it, we establish the optimality of a stage‐ and partial‐state‐dependent‐threshold policy when 

prices can only be positive. We develop heuristic one (H1) based on an extension of this structure when 

prices can also be negative and approximate stochastic dynamic programming. Seeking a simpler 

heuristic, we modify H1 to obtain heuristic two (H2) that uses a price‐dependent‐threshold policy and a 

derivative‐free deterministic optimization technique (the Nelder‐Mead simplex method; Lagarias 

et al. 1998) embedded within a Monte Carlo simulation of the stochastic processes of our MDP. 

We conduct an extensive numerical study by choosing wind speed and electricity price models that allow 

us to compute an optimal policy and execute H1. The former model is similar to the ones employed by 

Kim and Powell (2011) and Wu and Kapuscinski (2013). The latter model combines variants of the ones 

in Lucia and Schwartz (2002), Seifert and Uhrig‐Homburg (2007), and Schneider (2012). We calibrate 

these models to wind data for Buffalo, NY, and price data for NYISO. Our instances involve making 

decisions every five minutes during one week. We find that: 

i. H1 computes an optimal policy, even when negative prices occur as frequently as 20% of the 

time. (Although we exhibit an example in which H1 does not obtain an optimal policy, this 

instance is pathological.) This observed optimality suggests that H1 may yield an optimal policy 

in most practical settings. On average, H1 can be executed in about 33 minutes, whereas 

computing an optimal policy explicitly takes approximately ten hours. 

ii. H2 has a close to optimal policy—with average and maximal optimality gaps equal to 2.86% and 

6.49%, respectively—and is two orders of magnitude faster to execute than H1, with an average 

running time of under 15 seconds. Hence, despite the suboptimality of its policy, H2 is potentially 

more practical than H1. In addition, H2 outperforms, in terms of both optimality gaps of their 

policies and execution times, versions of heuristics from the literature that use policies based on 

knowledge of only price, rather than also inventory. 

iii. The value and environmental benefit of storage are fairly sensitive to changes in the parameters 

that determine the frequency of occurrence of negative prices in our model. Specifically, as we 

make negative prices occur more frequently, the value grows—due to buying negatively priced 

electricity—and the environmental benefit shrinks—as a result of the drop in the amount of 

reduced curtailment. 

We review the literature in section 2. We present our MDP in section 3. In section 4 we determine the 

structure of an optimal policy for this MDP for the special case when prices are always positive. In 

section 5 we extend this structure—as an approximation—to the case when prices can also be negative to 

obtain H1, and present H2 and other heuristics. We discuss our numerical study in section 6 and conclude 

in section 7. Appendix A details the computation of the policies we analyze. An online appendix includes 

all the proofs of the results stated in the main text of this study and an example in which H1 does not give 

an optimal policy. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0003
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0011
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0016
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2 Literature Review 

Denholm and Sioshansi (2009) and Fertig and Apt (2011) consider the interplay of generation, storage, 

and transmission capacity in electricity systems: The former studies how to best locate storage when 

transmission capacity is scarce; the latter investigates the optimal sizing of storage and transmission 

capacity. In contrast, we study how to manage a given WST system. However, our numerical study 

includes a variant of a heuristic available in Fertig and Apt (2011). 

Other authors examine the use of storage for wind farms. Brown et al. (2008) focus on how to satisfy the 

demand of an isolated system using wind generators and pump‐hydro storage to minimize daily operating 

cost. Castronuovo and Lopes (2004) maximize the daily profit of a merchant wind–hydro system. 

Korpaas et al. (2003) and Harsha and Dahleh (2015) consider a wind‐storage system that serves load as 

well as trades in a wholesale electricity market. The models of these papers ignore transmission capacity 

constraints, unlike our model. 

Wu and Kapuscinski (2013) investigate how to curtail wind energy to minimize the total balancing cost of 

an electricity market (possibly in the presence of storage) from the point of view of an electricity market 

operator. We instead take the perspective of a merchant wind farm generator, considering the use of co‐

located storage. Xi et al. (2014) optimize the use of an electricity storage facility to trade in both 

electricity energy and ancillary markets. In contrast, we consider how storage can be used to support wind 

energy production. Hu et al. (2015), Kök et al. (2018), and Aflaki and Netessine (2017) examine capacity 

investment decisions in renewable energy technologies without storage, whereas we study operating 

policies to manage WST systems. 

Another stream of work centers on how wind farm managers can use storage to make better bidding 

decisions in a market (e.g., Bathurst and Strbac 2003, Costa et al. 2008, Gonzalez et al. 2008, Jiang and 

Powell 2015, Kim and Powell 2011, and Löhndorf and Minner 2010). We do not consider bidding, 

assuming that any electricity offered to the market is accepted. This assumption is realistic: Many 

electricity markets in the US treat wind generators as “must‐run” in normal conditions (Wiser and 

Bolinger 2013) and 38% of the wind capacity developed in the US in 2009 was sold through 

merchant/quasi‐merchant agreements that do not involve bidding (Wiser and Bolinger 2013). 

Our study is also related to the literature on commodity and energy storage. Cahn (1948) introduces the 

classic warehouse problem, for which Charnes et al. (1966) show the optimality of a simple basestock 

(threshold) policy. Rempala (1994) and Secomandi (2010) extend this work to incorporate limits on the 

rates at which the commodity inventory can be adjusted. (See also Secomandi and Seppi 2014, chapter 5.) 
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Other related work includes Mokrian and Stephen (2006), Chen and Forsyth (2007), Boogert and de Jong 

(2008), Thompson et al. (2009), Lai et al. (2010), Devalkar et al. (2011), Wu et al. (2012), Nadarajah 

et al. (2015), Secomandi (2015), and Secomandi et al. (2015). Different from those studied by these 

authors, our model has a random inflow (wind). Related settings with such intake include hydropower 

generation (Nasakkala and Keppo 2008) and liquified natural gas (LNG) regasification (Lai et al. 2011). 

These systems differ from ours, which stores its output (electricity), in that they store their input (water or 

LNG). Thus, the operating policies in these papers feature only sell‐down thresholds, whereas the policies 

associated with our heuristics have additional buy‐and‐store‐up‐to and generate‐and‐store‐up‐to 

thresholds. Boyabatlı et al. (2017) consider agricultural commodity processing with output storage. The 

primary focus of their work is on capacity investment, so their operating model and resulting policy are 

simpler than ours. 

Zhou et al. (2016) is, to the best of our knowledge, the only other paper that studies the implication of 

negative prices on the management and value of energy storage. However, whereas it compares electricity 

storage and disposal strategies, the main focus of this research is to develop and evaluate heuristics to 

manage a WST system. Further, the work of Zhou et al. (2016) uses the electricity price model calibrated 

here, which was presented in an earlier version of our study. This model modifies the one in Schneider 

(2012) to more realistically generate prices for markets with both negative prices and price spikes (short‐

lived price jumps). 

Under the H1 policy the end‐of‐period inventory level can be a non‐monotonic function of the beginning‐

of‐period inventory availability. This feature of this policy appears to be unique in the literature on energy 

storage. The H2 policy differs from suitable variants of the policies presented in Graves et al. (1999), 

Fertig and Apt (2011), and Powell and Meisel (2016b) because its decision rules depend on both the 

electricity price and the inventory level, instead of only this price. The use of approximate stochastic 

dynamic programming to compute the H1 policy resembles the use of this technique to obtain energy 

storage policies in Lai et al. (2010, 2011), and Nadarajah et al. (2015). H2 is an example of a heuristic 

that applies direct search methods to tune the values of the parameters that define its policy (Powell and 

Meisel 2016b). 

 

3 Model 

We consider the operation of a WST system: A remote wind farm is co‐located with a storage facility, 

both of which are connected to an electricity market via a transmission line (Figure 1). The merchant 

managing this system can thus buy and sell electricity in the market. We assume that the WST system is 

small relative to the market, so the merchant decisions do not affect market prices. The merchant makes 
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operational and trading decisions periodically over a finite horizon, that is, at each time t in the finite 

set . In particular, electricity trading occurs at the beginning of a period. 

Further, simultaneously buying and selling the same quantity at the same price, known as a “wash trade,” 

is illegal in commodity markets.1 

Thus, the transmission line can transmit power in only one direction in any given time period. Any 

electricity left in the storage facility at the terminal time T is worthless. We neglect the deterioration of 

the storage facility due to charging and discharging (see, e.g., Guo et al. 2017). 

 

Figure 1. System Overview  

 

Parameters 

We assume the storage facility is finite in energy capacity and power capacity. If we think of this facility 

as a warehouse for electricity, the energy capacity is analogous to its space and the power capacity 

represents the maximal rate at which its inventory can be modified. For the rest of this paper, any capacity 

should be interpreted as power capacity unless specified otherwise. We use the following parameters: 

• : Energy capacity of the storage facility (in energy units); . 

• : Charging, discharging capacity (in energy units/period); . 

• : Generation, transmission capacity (in energy units/period); , .  

The transmission capacity represents the part of the capacity of the transmission line contracted by the 

wind farm. (See Duke Energy 2017 for an example of such a contract, which is not exclusively available 

to wind farms.) We realistically assume that : In practice, the contracted transmission 

capacity is typically smaller than the sum of the wind farm generation capacity and the storage 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-bib-0024
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-bib-0015
https://wol-prod-cdn.literatumonline.com/cms/attachment/f1df50fb-f442-4da2-8a3a-24b6c314b09e/poms12946-fig-0001-m.jpg
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discharging capacity, because wind energy is intermittent (if  holds then the 

transmission capacity is never constraining). 

• α, β: Charging, discharging efficiency of the storage facility; both parameters are in (0, 1]. Our model can 

be easily extended to include inefficient holding of electricity over time without changing the structural 

results in section 4 and section 5.1. 

• τ: Transmission efficiency, that is, the ratio of electricity flowing out of the transmission line to that 

flowing into this line, so that 1 − τ is the line loss rate; τ ∈ (0, 1]. Losses are incurred at the end of the 

transmission line in either direction. 

• δ: One‐period risk‐free discount rate (we use risk‐neutral valuation; Seppi 2002, Smith 2005); this 

parameter is in (0, 1]. 

State Variables 

Period t is defined as the time interval [t, t + 1). A state variable with subscript t is known at the beginning 

of period t, that is, time t, but unknown in earlier periods (Powell 2007, section 5.2). The state at 

time t, , includes the following components: 

• : Inventory of electricity (in energy units) in the storage facility at the beginning of period t. The 

domain of this variable is . 

• : Available wind energy, or electricity that can be generated given the wind speed at time t by the wind 

turbines in period t (in energy units/period). This quantity is limited by the generation capacity  of the 

turbines; . We model wind speed using a stochastic process and convert it 

to  using the production curve of turbines. We set to zero if the wind speed falls below the cut‐in 

speed or exceeds the cut‐off speed (the minimal and maximal speeds at which a given turbine can 

generate output; in the latter case, the issue is avoiding damage to the turbines). 

• : Price‐component pair at time t, , which includes a mean‐reverting component and a 

spike component. The electricity price at time t,  ($/energy unit), is a function of time t and these two 

components. In section 6.2.2, we specify such a function. One could model the electricity price as a 

function of more than two components without changing the structural results in section 4 and section 5.1. 

The state  is the vector . The given initial state  is . The state space in each 

period is . 

Decision Variables (Actions) 

At time , the merchant observes  and determines the inventory change and generation (action) 

pair ( , ) . In particular, inventory reductions and additions, respectively, correspond to 

negative and positive values of . We use a single inventory adjustment decision variable rather than 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0011
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0013
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0014
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separate such variables for inventory increases and decreases because they either involve wash trades, 

which are illegal, or are provably suboptimal. 

Transition Functions 

The inventory level changes from time t to time t + 1 according to  The variable  and 

vector  evolve to  and , respectively, according to Markovian stochastic processes (see 

section 2 for examples thereof), which we assume to be independent; relaxing this assumption does not 

change our structural results given in section 4 and section 5.1. 

Immediate Payoff Function and Constraints 

We define the immediate payoff function as 

 

where the first case represents purchasing cost and the last two cases express selling revenue. 

Given , we denote by  the set of action pairs  in  that satisfy 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

here Equations 1, 2, and 3 are the transmission capacity constraints—1(·) is the indicator function that 

equals one if its argument is true and zero otherwise; Equation 4 restricts the generation to be no more 

than the wind energy availability (this constraint and imply ); Equation 5 restrains 

the inventory change to lie between the (negative of the) energy available in the storage facility and the 

remaining storage energy capacity; and Equation 6 imposes on this change the limits expressed by the 

(negative of the) discharging capacity and the charging capacity. 

Objective Function 

Each stage of our MDP corresponds to a time in . A feasible policy π is the sequence of decision 

rules , where  maps the state  to the feasible action pair  in stage t. 

Our objective is to maximize the total discounted expected cash flows over all feasible policies, which we 

include in the set Π: 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0002
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0003
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0004
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0006
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(7) 

where the expectation  is taken with respect to the distribution of the random state reached by 

policy π in stage t. For each stage  and state , the value function of each feasible 

policy π, , satisfies the recursion 

(8) 

and the optimal value function, , solves 

(9) 

with both  and  set equal to zero for each . 

Appendix A.1 discusses the computation of an optimal policy in the context of our numerical study, in 

which the dynamics of the available wind energy and the price‐component pair are specified in 

section 6.2 and the state components and the action pairs are discretized as discussed in section 6.3. 

 

4 Analysis When the Electricity Prices are Always Positive 

In this section, we analyze model 7. Specifically, we establish an optimal policy structure when the 

electricity prices can only be positive, which forms the basis of H1 and H2, our heuristics for the case 

when prices can also be negative. 

To obtain a well‐defined model we make the benign Assumption 1. 

Assumption 1. For each , we have  for each , , and . 

We state in Proposition 1 the concavity of the resulting optimal value function in the inventory level 

given all the other state components in each stage. 

Proposition 2. Suppose  for each  and . For each , is 

concave in  for each given . 

Based on Proposition 1, we obtain the policy structure presented in Proposition 1. We denote 

by  an optimal action pair for the optimization on the right‐hand side of Equation 9. For 

notational convenience, we define the ending inventory level after modifying  by  as ; 

the optimal continuation function as ; the functions 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-mthst-0002
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0010
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(10) 

(11) 

(12) 

where we implicitly employ the largest element of each defining set; and the sets 

 

For brevity, below we write  in lieu of  for each ν ∈ {1, 2, 3}. 

Proposition 3. Suppose  for each . For each  we have (i) , 

(ii) , and (iii)  (store 

excess generation) if ; 

 

, and ; 

 

, , and either  or 

; (store excess generation) if , , and 

either  or ; 
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, and ; and 

 

, and either  or . 

Generating to the maximal extent is optimal. When  is large, that is, in , it is optimal to sell as much 

as possible and store any leftover so that the ending inventory level is as close as possible to . 

Otherwise, that is,  is in  or , the optimal inventory change depends on the quantities , , 

and . In particular, when  and this action can be of four 

distinctive types: If , store generation and purchased electricity to bring the inventory 

level as close as possible to ; if , store generated electricity without 

buying so that the resulting inventory level is as close as possible to ; if , 

generate and keep the inventory level unchanged; if , generate and sell to bring the inventory 

level as near as achievable to . Thus, we refer to , , and  as inventory threshold 

functions. Figure 2 illustrates the behavior of the inventory level at the end of a period as a function of the 

one at the beginning of a period corresponding to the action types just described. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0002
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Figure 2. Illustration of the Optimal End‐of‐Period Inventory, , as a Function of the 

Beginning‐of‐Period Inventory, , for the Case  and  in 

Proposition 1 (for Ease of Illustration We Assume that the Thresholds can be Reached from Every 

Inventory Level in Each of their Respective Intervals) 

 

The functions , , and  in general return separate values due to the presence of both the 

transmission loss (τ < 1) and the charging/discharging losses (αβ < 1), which make the immediate 

marginal values of the following three types of actions, or, equivalently, the respective slopes of the 

immediate payoff function, different from each other: Storing one unit of bought electricity, storing one 

unit of generation, and selling one unit of inventory. If τ = 1 then , because the marginal 

values of increasing the inventory using one unit of purchased or generated electricity are equal (in this 

case the optimal structure reduces to that in Secomandi 2010). Similarly, if αβ = 1 then  coincides 

with . 

 

5 Heuristics 

In this section we define four heuristics for model 7. We introduce H1 in section 5.1, H2 in section 5.2, 

and heuristics three and three‐plus (H3 and H3+), which are inspired by the literature and rely on policies 

that use only price information, in section 5.3. The H2, H3, and H3+ policies are stationary, which is a 

potential limitation in a non‐stationary environment, such as our numerical study. We also considered 

heuristics with policies based on time‐of‐day (used, e.g., for managing hydro reservoirs; see Powell and 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-mthst-0003
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0008
https://wol-prod-cdn.literatumonline.com/cms/attachment/090ca6cd-c8a4-4e35-95ef-27e4e8ae9ee1/poms12946-fig-0002-m.jpg
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Meisel 2016a), deterministic reoptimization, and two‐ and three‐period lookahead (Powell and 

Meisel 2016b). They are not included in this paper because they perform unsatisfactorily on our instances. 

 

5.1 Heuristic One 

The idea for H1 is as follows: (i) We extend the structure of our optimal policy for the special case when 

prices can only be positive to obtain a feasible policy for the general case when prices can also be 

negative and (ii) we approximately solve a stochastic dynamic program to compute it. It can be shown 

that this extended structure would be optimal in the latter case if the objective function of the optimization 

in (9) were jointly concave in the initial inventory level and the action pair. Unfortunately, this joint 

concavity is not true in general: Appendix S4 includes an example for which the H1 policy is not optimal. 

H1 partly relies on the threshold functions 

(13) 

(14) 

(15) 

(16) 

where the largest element of each defining set is implicitly used 

and ;  satisfies Equation 8 with π set to 

H1 (we describe the actions of the H1 policy below). Proposition 1 orders these 

functions. We abbreviate  to  for each ν ∈ {1, 2, 3, 4}. 

Proposition 4. In each  and  we 

have  when  and 

 when . 

Proposition 1 states that in each stage and partial state (that is, excluding the inventory level) the ordering 

of  through  depends only on the sign of the price . Intuitively, this claim holds 

because the objective functions in 13-16 differ only by a term that is linear in . 

When  Proposition 1 is consistent with part (i) of Proposition 1. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0009
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-mthst-0004
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-mthst-0004
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0019
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-mthst-0004
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The H1 policy follows: 

i. : If  then use the decision rules specified in 

Proposition 1replacing  with  for ν ∈ {1, 2, 3},  with , and , , and 

, respectively, with 

 

If  then we 

define  and 

, that is, inventory is sold to reach a level that is as close 

as possible to  and as much wind energy as feasible is produced and sold taking into 

account the residual transmission capacity. 

ii. : The threshold functions  for ν ∈ {1, 2, 3, 4} and , which we 

define below and abbreviate to  for notational convenience, determine the action pair as 

follows: 

iii.  

o If  then 

 

 

o If  then 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-mthst-0003
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The function  is the maximal inventory level  such that the two action 

pairs  and  result in the 

same evaluation of the right hand side of Equation 8 with π set equal to H1. Intuitively, this level is such 

that we are indifferent between storing purchased electricity up to  and selling inventory down 

to  when no wind energy is produced. 

When  and , the action pair under the H1 policy can be of three separate 

types (see Figure 3): When  buy and generate electricity so that the ending 

inventory level is as close as possible to ; when purchase energy 

to bring the inventory level as near as viable to  without producing; and when  sell 

inventory so that the resulting level approaches  as much as is feasible and do not generate. It may 

be desirable for the H1 policy to sell inventory when the price in the current period is negative (e.g., 

if  in Figure 3) because a larger end‐of‐period inventory level is not always more appealing than 

a smaller one; that is, the continuation function of this policy may fail to be monotonic in this type of 

inventory level. For instance, when the expected price in the next period is even more negative than the 

price in the current period, selling now at a loss to free space to buy and store then is potentially 

appealing. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0009
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0003
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0003
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Figure 3. Illustration of the H1 Policy End‐of‐Period Inventory, , as a Function of the 

Beginning‐of‐Period Inventory, , When  and  (for Illustration Purposes 

We make the Assumption that the Thresholds are Attainable from Every Inventory Level in Each of their 

Corresponding Intervals) 

Under the H1 policy, the inventory level at the end of a period can fail to be monotonic in the one at the 

beginning of a period. For example, in Figure 3 as the latter level increases from zero to  the former 

one first increases and then decreases. This rise occurs because (i) if the inventory level is smaller 

than  then after purchasing to the maximal extent, that is, , it is advantageous to 

increase it up to  by generating provided residual charging capacity is available and (ii) if 

this level lies between  and then it is beneficial to purchase electricity to bring it as 

close as possible to . This drop arises for the following reasons: (i) If the inventory level is 

between  and then there is sufficient space to purchase and store electricity up 

to  to take advantage of the negative price in the current period and (ii) if this level 

exceeds  then the space available for storing purchased electricity is so limited that it is advantageous to 

sell inventory down to  to create the opportunity to purchase electricity in the event that prices 

will be negative in the future. 

In the discretized state and action setting of section 6, we obtain the H1 policy by approximately, rather 

than exactly, solving a stochastic dynamic program as discussed in Appendix A.2, exploiting the fact that 

its threshold functions do not depend on the inventory level. Nonetheless, H1 may not be practical for real 

time use, because the value function of its policy needs to be evaluated for every stage and state. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0003
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0016
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#support-information-section
https://wol-prod-cdn.literatumonline.com/cms/attachment/c2638889-9dbc-4133-869a-9cc9fa131cca/poms12946-fig-0003-m.jpg
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5.2 Heuristic Two 

H2 simplifies H1 both in terms of type of policy used and the approach taken to compute the values of its 

policy parameters. 

The H2 policy is a version of the H1 policy that employs price dependent inventory threshold 

functions,  for ν ∈ {1, 2, 3, 4}, which we simplify by suppressing their argument. Their 

definitions, which are based on the 

scalars  and  through  with , follow: 

• If  then  (purchase as much electricity 

as possible and generate as much as viable); 

• If  then , 

and (analogous to the case when  for the H1 policy); 

• If  then  and  (generate and sell to 

the maximal extent and then bring to market as much inventory as feasible). 

The H2 policy has five parameters. We compute them using a derivative‐free nonlinear optimization 

algorithm embedded within a wind‐speed and electricity‐price Monte Carlo simulation, which we 

describe in Appendix A.3. 

 

5.3 Heuristics Three and Three‐Plus 

H3 and its enhanced version H3+ are two heuristics whose policies use only the current price, as is 

common in the electricity storage literature (e.g., Graves et al. 1999, Fertig and Apt 2011, Powell and 

Meisel 2016a, and Powell and Meisel 2016b). The H3 policy relies on two scalars, , 

where the superscripted D and C stand for discharging and charging, respectively. It increases the 

inventory by first generating as much as possible and then by purchasing to the maximal extent if the 

price is low, ; keeps the inventory level unchanged and produces and sells as much as 

possible if the price is moderate, ; and generates and brings to market as much as 

feasible, storing any excess, if the price is high, . Specifically, the action pairs of the H3 

policy follow: 

• If  then  and 

; 
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• If  then  and ; 

• If  then 

 

and . 

The H3+ policy differs from the H3 policy only when prices are negative, in which case the former policy 

purchases as much electricity as possible and then maximizes the amount generated. H3 and H3+ 

compute their respective policies based on an approach similar to that used by H2 (see Appendix A.3). 

 

6 Numerical Study 

In this section we discuss our numerical study. We present the setup of this study in section 6.1. We 

discuss the wind and electricity price models and their calibrations in section 6.2. We explain the 

approach that supports the computation of the various policies in section 6.3. In section 6.4, we assess the 

performance of the heuristics presented in section 5. We quantify the effect of changing the frequency of 

negative prices on the incremental value brought about by and environmental benefit of storage in 

section 6.3. 

 

6.1 Setup 

Electricity is traded on the New York City real time market. This market is managed by the New York 

Independent System Operator (NYISO), which includes fifteen local markets (zones), and is one of the 

largest and most liquid electricity markets (NYISO 2013). As real‐time prices are set every five minutes, 

we specify our model using this frequency, that is, each period corresponds to a five minute interval. The 

per stage discount factor δ is 0.9999999, corresponding to an annual risk‐free interest rate of 1% with 

continuous compounding (recall that we use risk‐neutral valuation). We fix the horizon to be one week, 

that is, the number of five‐minute periods is 12 × 24 × 7 = 2016. 

We consider a hypothetical wind farm located in Buffalo, NY, which houses one of the largest wind 

farms in New York State. This wind farm consists of 120 General Electric (GE) model 1.5–77 turbines. 

This type of turbine is among the best selling ones in the US (Wiser and Bolinger 2013). Its capacity is 

1.5 MW (1 MW = 1 million watts and 1 watt = 1 joule/second), so the generation capacity of the wind 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0012
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-bib-0045
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farm is 120 × 1.5 MW = 180 MW. We scale it given the five‐minute period length to obtain , that 

is, . 

Co‐located with our wind farm is an industrial battery. We vary its energy capacity ( , in megawatt 

hour, or MWh; 1 MWh = 3.6 Giga joules) from 200 to 1200 MWh in steps of 200 MWh. This battery can 

be fully charged or discharged in ten hours (EPRI 2004). Thus, its (charging/discharging) power capacity 

is its energy capacity divided by ten hours, which we scale taking into account the period length to 

obtain  and  (in MWh/period). The base values of the battery charging/discharging efficiencies 

are α = 0.85 and β = 1. We varied these values over a broad range but found that our insights remained 

qualitatively unchanged. Therefore, we report results only for the base values of these parameters. 

A transmission line connects our wind farm to New York City. This line has a loss of 3%, that is, τ = 97% 

(Duke Energy 2017). We consider values for the portion of the capacity of this line leased to the wind 

farm between 80 and 180 MW in steps of 20 MW. The parameter  is this rented transmission capacity 

scaled according to the given period length. 

The relative values of the considered generation, storage, and transmission capacities are consistent with 

those in Denholm and Sioshansi (2009) and Pattanariyankool and Lave (2010). 

 

6.2 Wind Speed and Electricity Price Models and their Calibrations 

We describe the wind speed and electricity price models and their calibrations in section 6.2.1 and 

section 6.2.2, respectively. 

 

6.2.1 Wind Speed Model and its Calibration 

To represent wind speed evolution, we use an autoregressive of order one, AR(1), process with 

deterministic seasonality (Kim and Powell 2011, Wu and Kapuscinski 2013). We convert wind speed to 

available wind energy using the production curve of the GE 1.5‐77 wind turbine (displayed in Table 1; 

General Electric 2018), which has cut‐in and cut‐off speeds of 4 and 25 meters per second (m/s), 

respectively. 

Table 1. Production Curve of the GE 1.5‐77 Turbine (With Cut‐in and Cut‐Off Speeds of 4 and 25 m/s) 
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We have available from NOAA (2010) hourly wind speed data from 2005 to 2008 for Buffalo, NY. This 

wind speed data was recorded at 10 meters above ground (Buffalo), whereas the height of the GE 1.5‐77 

turbine is 80 meters. Based on Heier (2006), we convert this data to the height of this turbine by 

multiplying the observed wind speeds by , where the choice of 0.2 yields a value of 

33% for the ratio of the hypothetical sample output during 2005–2008 of our wind farm and its generation 

capacity, which lies within the range of reported values of analogous ratios for wind farms in NY 

(DOE 2017; such metrics are known as empirical capacity factors in the wind energy engineering 

literature). 

Let  be the hourly time index, which ranges from 1 through 24 × 7 = 168 with unitary increments. The 

wind speed in hour  is the sum , where  evolves as the AR(1) 

process , with  and  scalars and  an independent and identically distributed 

(i.i.d.) standard normal error term, and  is the seasonality 

function  with ⌈·⌉ the ceiling 

function,  a constant, and ‐and‐  and ‐and‐ , respectively, the daily and hourly magnitude‐and‐

phase‐shift parameters. 

Modifying  to obtain a seasonality function when the period length is five minutes entails only 

replacing the hourly index  with ⌈(t+1)/12⌉, with t the five‐minute period index, which varies from 0 

through 2015. We denote the five‐minute wind speed AR(1) process as , where ϕ, σ, 

and  are analogous to , , and , respectively. Applying this expression recursively 

yields . Matching the mean 

and standard deviation of the right‐hand side of this expression with those 

of  gives  and  

We calibrate the hourly model using nonlinear regression. We convert the resulting values of the 

parameters of its AR(1) component to obtain estimates for those of the corresponding five‐minute 

version. Table 2 reports all these values. We measure the fit of this calibrated hourly model by computing 

the mean absolute error (MAE) in terms of wind‐based electricity production of a single GE 1.5‐77 

turbine. The MAE is 0.145 MW. We also experimented with an AR(2) process and found that it did not 

fit the data any better than the AR(1) process. 

Table 2. Estimated Parameters of the Wind Speed Model (MAE = 0.145 MW in the Hourly Case) 

 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-tbl-0002
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6.2.2 Electricity Price Model and its Calibration 

Electricity prices exhibit mean reversion (a tendency to revert to a given level), spikes (jumps that last for 

a short duration), seasonality, and can be negative. Our price model combines a mean‐reverting process 

from Lucia and Schwartz (2002), a spike process as in Seifert and Uhrig‐Homburg (2007), a deterministic 

seasonality function similar to one used by Lucia and Schwartz (2002), and an inverse hyperbolic 

transformation as in Schneider (2012) to accommodate negative prices. 

We denote the time t mean‐reverting and spike components as  and , respectively, that 

is, . The corresponding electricity price, , is defined as , 

where  is the despiked price. We model the dynamics of the spike component, , as a compound 

Bernoulli process in which a spike occurs at time t with probability λ and its size follows an empirical 

distribution. We assume that the despiked price, , satisfies , 

where  is the inverse hyperbolic sine function, ℓ is a scale parameter, and  is the deterministic 

seasonality function. The inverse hyperbolic sine function is analogous to the natural logarithm function, 

a commonly used transformation of commodity prices (Lucia and Schwartz 2002), but it can be employed 

with negative prices. Unlike Schneider (2012), we apply this transformation to the despiked price rather 

than directly to the price to avoid unrealistically large spikes. We model the dynamics of the mean 

reverting component as the AR(1) process , where κ is the speed of mean 

reversion,  is the volatility, and each  is an i.i.d. standard normal error term. This process reverts to 

zero, because we include the mean of the despiked and transformed price process, , in 

the seasonality function. We specify this function 

as , where  is a constant, and , 

, and  are the respective coefficients of the dummy variables , , and  that equal one if 

period t is in month i, week day j, and hour h, respectively, and zero otherwise. 

We calibrate our price model to the 2005–2008 NYISO New York City zone real time prices presented in 

Figure 4. In addition to mean reversion and a substantial number of positive and negative spikes, this 

price series exhibits 1898 negative prices during four years (420,768 = (365 × 3 + 366) × 24 × 12 five‐

minute intervals), corresponding to a frequency of 0.45%. Albeit not apparent in Figure 4, this data 

displays seasonality at various time scales. Our chosen price model includes all these features. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0004
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0004
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Figure 4. NYISO New York City Zone Real Time Prices Observed During the 2005–2008 Time Frame 

In our price model, the despiked price in period t + 1, , conditional on the value of the mean‐

reverting component in period t, , has a Johnson SU distribution (Johnson 1949) with mean 

(17) 

where  sinh  is the hyperbolic sine function. Expression 17 plays an important role in our calibration. 

Given a value of ℓ, we use the following iterative approach to calibrate our price model (below the 

index t indicates a historical data observation period, each of which is included in 

set ). 

Step 0. Initialize the time series of estimated spike sizes, , to zero. 

Step 1. Remove the identified spikes from the time series of observed prices, , to obtain a time 

series of estimated despiked prices, . 

Step 2. Deseasonalize the time series of transformed estimated despiked prices, , to 

obtain the time series of estimated mean‐reverting components, , 

where the calibrated seasonality function  is obtained by applying linear regression to the former 

time series. 

Step 3. Calibrate the mean‐reverting process parameters κ and  on the  time series using simple 

linear regression (Lucia and Schwartz 2002) to obtain their estimates and . 

Step 4. Identify spikes for each . If  is zero, tag price  as containing a spike 

if , where the expectation is given by Equation 17, is no less than a 

prespecified constant (50 in our calibration). If  contains a spike, 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0028
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0028
https://wol-prod-cdn.literatumonline.com/cms/attachment/760921a6-8314-4978-8a09-874a91188b04/poms12946-fig-0004-m.jpg
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update  to . 

Replace  with  and  with . 

Step 5. Stop if the parameter estimates for the AR(1) process and seasonality function have converged. 

Otherwise return to step 1. 

We obtain a value for the estimate  of the scale parameter ℓ by minimizing the sum of the absolute 

deviations between each of the first two (unconditional) predicted and observed price moments. 

Tables 3 and 4 report the estimated parameters of the AR(1) process and the transformation function and 

of the seasonality function, respectively. Our estimate  of the spike probability is 0.0751, which we 

obtain as the ratio of the number of identified spikes and the number of periods in our data set. We 

construct the empirical spike distribution displayed in Figure 5 based on the spikes extracted by our 

calibration procedure. The MAE of our calibrated model is $7.63/MWh, whereas the average of the 

observed prices is $85.12/MWh. The first two (unconditional) price moments estimated on a set of 10,000 

simulated price paths differ from their respective values computed on our data by less than 1%. The 

frequency of negative prices observed on these simulated paths is 0.44%, which compares favorably with 

the empirical frequency of 0.45%. 

Table 3. Estimated Parameters of the Price AR(1) Process and the Transformation Function 

 

Table 4. Estimated Parameters of the Price Seasonality Function 
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Figure 5. Empirical Spike Distribution ( ) 

We obtain a value of 0.0147 for the correlation between the residuals of the hourly wind speeds and the 

averages of the residuals of the despiked electricity prices for each hour from our calibration. Therefore, 

for both simplicity and consistency with our model set up, we assume the wind speed and price AR(1) 

processes are independent in our analysis. However, our calibrated parameters of the seasonality 

functions capture deterministic relationships between the observed wind speeds and electricity prices, 

e.g., strong wind and low electricity price at night. 

 

6.3 Computational Approach 

We employ a discretized version of our MDP (7) to carry out our computations. 

We discretize the calibrated five‐minute wind speed AR(1) process as a period‐independent grid that 

includes the integers between 0 and 25 (m/s), which is the cut‐off speed of the GE 1.5‐77 turbine. To 

obtain the transition probability between any two such levels on this grid, we minimize the squared 

difference between the first two moments of the discretized wind speed model and those of its continuous 

counterpart. Given a wind speed value, which is the sum of the values of its AR(1) and seasonality 

components, we obtain its corresponding available energy amount applying linear interpolation to the 

production curve displayed in Table 1. 

Based on the method in Jaillet et al. (2004), we discretize the calibrated price AR(1) process as a 

trinomial lattice with five‐minute time increments that specifies attainable despiked price levels and their 

transition probabilities for each stage, assuming the market price of risk (Duffie 1992) is zero. 

With  the constructed lattice converges to 11 levels in the 6th stage. 

We discretize the feasible inventory set using a grid with  evenly spaced levels between 

0 and the storage energy capacity  (200 MWh is the smallest value of this parameter that we consider). 

We use a set of feasible action pairs that is consistent with the feasible inventory and available wind 

https://wol-prod-cdn.literatumonline.com/cms/attachment/291ccc72-b240-45e5-a216-c5eb4d4b989f/poms12946-fig-0005-m.jpg
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energy sets to compute both our optimal policy and the inventory‐change part of the H1 policy. The initial 

state  is (0, 4.69, 0, 0), where 4.69 MWh corresponds to a wind speed of 7.238 

m/s. 

Appendix A includes the details of the computation of both the optimal policy and the H1, H2, H3, and 

H3+ policies for our discretized MDP. We evaluate the H2, H3, and H3+ policies by applying 

Equation 8 to this version of our MDP (computing the optimal policy and the H1 policy also yields their 

respective values). 

 

6.4 Performance of Heuristics 

Our study is based on an extensive set of instances. In addition to the six values for each of the storage 

energy capacity and the transmission capacity discussed in section 6.1, we consider six values for the 

frequency of negative price occurrence, namely, 0.05%, 1%, 5%, 10%, 15%, and 20%, which we obtain 

by varying the probability of observing negative spikes. Thus, the total number of examined instances 

is  = 216. 

We assess the performance of all the heuristics based on the optimality gaps of their policies in the initial 

stage and state (that is,  with π ∈ {H1, H2, H3, H3+}) and their run times. 

Tables 5 and 6 display these metrics, respectively. Table 6 excludes the time taken to evaluate the H2, H3, 

and H3+ policies. 

Table 5. Percentage Optimality Gaps of All the Heuristics Across All the Instances 

 

Table 6. CPU Minutes Required to Compute the Optimal Policy and to Execute All the Heuristics Across 

All the Instances 

 

 
 

• Note: All experiments are run on a computer with Intel(R) Core(TM) i7‐3770K 3.40 GHz CPU and 8 GB 

RAM. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0017
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-tbl-0006
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The H1 policy is optimal on each considered instance. Furthermore, it continues to be optimal in the 

following two additional sets of experiments: When more negative prices are obtained by reducing the 

values of the negative hourly seasonality coefficients, that is, decreasing , for h = 1, …, 23, in 

Table 4 if  instead of increasing the probability of negative spike occurrence, and when we vary 

the estimated mean‐reversion parameter, . (More precisely, the optimality gap of the H1 policy is less 

than 0.006% on all these instances; we attribute the presence of such a positive, yet very small, gap to 

numerical approximations in our computations.) Thus, while the H1 policy is not optimal in general, as 

illustrated in Appendix S4 , our results suggest that in practice the optimal policy may be very similar, if 

not identical, to the H1 policy. On average it takes about 10 hours and 33 minutes, respectively, to 

compute the optimal policy and to execute H1; that is, running H1 is on average about 17 times faster 

than obtaining the optimal policy. This difference occurs because the computation of the H1 policy avoids 

looping over the possible values of one component of the state and one decision variable compared to that 

of the optimal policy (see Appendices A.1 and A.2). 

The H2 policy is near optimal, with average and maximal optimality gaps equal to 2.86% and 6.49%, 

respectively, and outperforms the H3 and H3+ policies, whose respective average‐and‐maximal 

optimality gaps are 11.39%‐and‐22.37% and 6.05%‐and‐11.16%. (The optimality gaps of the H2 policy 

are always smaller than those of the H3 policy, and exceed those of the H3+ policy in only 1 out of the 

216 instances by 0.5%.) The H2 policy outperforms the H3 policy and, overall, the H3+ policy because 

whereas the latter two policies make decisions solely based on the price information in the current period, 

the H2 policy also uses knowledge of the inventory level of the storage facility. Our results suggest that 

even if it has a stationary nature, the H2 policy is a reasonable approximation for the optimal policy, 

which in general is non‐stationary. On average, H2, which takes less than 15 seconds to execute, is faster 

than H1 by two orders of magnitude and both the H3 and H3+ policies, which require about 9 minutes of 

run time, by one order of magnitude. Even though the H2 policy depends on more parameters than the H3 

and H3+ policies do, the algorithm that we employ to compute the former policy becomes frequently 

trapped in local optima when applied in the context of the latter two policies. Therefore, we must resort 

to using a slower method to obtain them (see Appendix A.3). 

 

6.5 The Effect of Negative Prices on the Value Added By and Environmental Benefit of Storage 

We define the value added by storage as the difference between the optimal value of the WST 

system, , and the one of the wind energy production and transmission (WT) system that has no 

storage (NS) and thus optimally sells as much generated energy as possible when prices are positive and 

curtails otherwise, . Figure 6 displays these values and their difference as functions of the 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0006
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frequency of occurrence of negative prices for 600 MWh storage energy capacity and 120 MW 

transmission capacity, which are typical when expressed as ratios of the generation capacity (Denholm 

and Sioshansi 2009, Pattanariyankool and Lave 2010; other choices of these parameters yield 

qualitatively similar results). When this frequency increases from 0.5% to 20%, the optimally managed 

WST and WT systems, respectively, gain and lose progressively more value, so that the value added by 

storage rises rapidly, from 30.4% to 102.4% of . 

 

Figure 6. The Optimal WST and WT System Values (Left Panel) and their Difference (Right Panel) for 

600 MWh Storage Energy Capacity and 120 MW Transmission Capacity 

To obtain some understanding for this finding, we break down the total expected optimal amount of 

stored electricity, , into the total expected optimally (i) purchased energy net of 

the transmission loss, , and (ii) stored 

generation,  minus the previous quantity (all these metrics are expressed before 

applying the charging loss). The left panel of Figure 7 presents the values of these two components for the 

same configuration that underlies Figure 6: The first one increases whereas the second one decreases 

when negative prices become more frequent. Intuitively, it is more valuable to store electricity purchased 

at a negative price than wind energy generated for free. This analysis suggests that the increase in the 

incremental value brought about by storage stems from the increased amount of purchased energy when 

negative prices occur more frequently. 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0007
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-fig-0006
https://wol-prod-cdn.literatumonline.com/cms/attachment/2a9666e8-e475-4a96-80b1-5af6ddae73f3/poms12946-fig-0006-m.jpg
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Figure 7. The Two Components of the Total Expected Optimal Stored Electricity (Left) and the Reduced 

Curtailment (Right) for the Setup of Figure 6 

 

We also examine how the frequency of negative prices affects the environmental benefit of storage, 

measured as the total expected reduction of the amount of curtailed wind energy that storage 

enables: , 

where  is the optimal generation in stage t and state  of the WT system. The right panel of 

Figure 7 shows that reduced curtailment decreases when negative prices become more numerous, because 

energy acquired in the market increasingly displaces from storage energy generated by the wind farm. 

Transportation inefficiencies render this use of storage environmentally unappealing even if the purchased 

energy were as “clean” as wind energy. This issue would be more acute if this replacement involved 

“dirty” energy obtained from sources such as coal or natural gas. Thus, the environmental benefit of 

storage erodes as negative electricity prices occur more frequently in our model. 

 

7 Conclusions 

We examine the merchant management of a WST system modeled as an MDP with stochastic wind 

energy availability and electricity prices. Characterizing any optimal policy structure in the general case 

when these prices can be negative is difficult. However, we establish that a stage‐ and partial‐state‐

dependent threshold policy is optimal in the special case when they are always positive. We extend it as 

an approximation to the general case and further simplify it to a price‐dependent threshold policy. H1 and 

H2 use these policies, respectively. Whereas H1 requires approximately solving a stochastic dynamic 

program, H2 relies on a derivative‐free optimization algorithm embedded in Monte Carlo simulation of 

https://wol-prod-cdn.literatumonline.com/cms/attachment/ebbe5614-97a9-40ba-bba0-a9d417e96974/poms12946-fig-0007-m.jpg
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the stochastic processes of our MDP. We analyze the performance of these and other known heuristics. 

We also investigate the value added by and the environmental benefit of storage. 

Using data‐calibrated models of wind speed and electricity prices that allow us to compute an optimal 

policy and execute H1, we find that the H1 policy is optimal, even when these prices are negative 20% of 

the time. This observation suggests that this policy may be optimal for most, if not all, practical instances, 

even though we present a pathological counter example. Executing H1 is much faster than computing an 

optimal policy explicitly: Their respective average computational requirements are 33 minutes and 

10 hours. On average, the optimality gap of the H2 policy equals 2.86% and H2 has a run time of 

15 seconds. Hence, despite the suboptimality of its policy, H2 is more practical than H1. Further, the H2 

policy generally outperforms two variants of simple and known policies that rely exclusively on the 

electricity price, because it depends on inventory availability too. It is also faster to compute than these 

policies. When we amplify the frequency of negative price occurrence, the optimal amount of purchased 

electricity rises and the curtailment reduction drops, so that storage increases the value of the WST 

system but its own environmental benefit shrinks. 
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Appendix A: A. Details about the Computation of the Considered Policies 

We describe the computation of the optimal policy in section A.1, the H1 policy in section A.2, and the 

H2, H3, and H3+ policies in section A.3, based on the discretization of our MDP (7) discussed in section 

6.3.  

A.1. Computation of the Optimal Policy 

We denote by , , and the discretized inventory, available wind energy, and spike price 

component sets, respectively, and by , , and their respective cardinalities. We let the discretized 

set of values of the mean‐reverting price component and its cardinality in stage t be and . We 

define as the maximum of all the ’s. For each inventory and available wind energy pair 

, to reduce the effect of the approximation induced by the discretization, we 

include in the discretized action set all the action pairs from set that satisfy 

for some and , as well as the extreme points of set .  

We compute the optimal policy and value function by standard backward dynamic programming on the 

discretized state space . To speed up computation and save memory, 

we exploit the state independence of the spike price component by evaluating for each partial state 

in stage t + 1 the function := 

, where expectation is with respect to the discrete distribution of the 

random variable . With a slight abuse of notation, we then evaluate the version of 

the stage t optimal continuation function as , where expectation is 

with respect to the discrete joint distribution of the random variables and conditional on the 

known pair . Given how we model the evolution of , is identical to 

. We thus equivalently express 9 as  

(18) 

When solving 13, a next‐stage inventory level may not belong to the set due to the inclusion 

in set of the extreme points of set . In this case, we linearly interpolate the values of 

the considered version of the optimal continuation function for the two inventory levels in set that are 

adjacent to this next‐stage inventory level. When multiple action pairs are optimal, we select the one that 

results in the largest next‐stage inventory level.  

The number of stages and states in the backward recursion that computes the optimal policy and value 

function is of order . The number of feasible action pairs in each stage and state is of 

order . The total number of operations taken to execute this backward recursion is thus of order 

, where the first, 

second, and third terms in this sum correspond to computing , obtaining from (given that 

transitions to only three possible values of on the trinomial lattice), and exhaustively searching for the 

optimal action pair, respectively.  

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-disp-0010
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From stage 6 onward, when the mean‐reverting price lattice converges to 11 levels, the number of states 

per stage for the largest value of the storage energy capacity that we consider is (120 × 9 + 1) × 

26 × 11 × 68 = 21,023,288. We thus keep in memory the values of the optimal next‐stage value function 

only when evaluating the optimal value function in the current stage; that is, we discard them when this 

computation is complete. Likewise, we do not keep in memory the optimal actions that we compute. 

A.2. Computation of the H1 Policy 

We determine the threshold functions of the H1 policy using Algorithm 1, a backward recursion that 

exploits the structure of this policy discussed in section 5.1. We perform this recursion based on the same 

discretized state and inventory action spaces used to compute the optimal policy, but directly use the 

generation decision rules of this policy to determine the energy production action.  

Algorithm 1. Computation of the H1 Policy  

1:  

2: for eacht = T − 1, ⋯, 0 do 

3: for each do 

4: for each do  

5: .  

6: end for 

7: end for 

8: for each do 

9: Compute for ν ∈ {1, 2, 3, 4} by applying exhaustive search to (13)–(16) with 

replaced by .  

10: end for 

11: for each  

12: Determine as explained in section 5.1.  

13: 

.  

14: end for 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0013
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15: for each do 

16: .  

17: end for 

18: end for 

We define the functions and for the H1 policy analogously to 

how we specify the versions of these functions for the optimal policy. Specifically, for each stage t we 

evaluate the function as and the function 

as in lines 3–7 and 15–17, 

respectively, of Algorithm 1. We compute each function , with ν ∈ {1, 2, 3, 4}, via an 

exhaustive search in lines 8–10 of this algorithm. We determine the action pair 

in stage t and state based on the structure of 

the H1 policy discussed in section 5.1 and evaluate the value function in this stage 

and state in lines 11–14 of Algorithm 1. We use linear interpolation when needed.  

The total number of operations of Algorithm 1 is of order 

, which amounts to a reduction of 

order compared to the computation of the optimal policy.  

A.3. Computation of the H2, H3, and H3+ Policies 

We use the following three steps to obtain the parameters of the H2 policy: 

Step 1. Generate sample paths of the available wind energy and electricity price from stage 1 through 

T − 1, starting from the stage 0 values and (recall that the price spike component random variables 

are i.i.d.).  

Step 2. For each sample path n, use the Nelder‐Mead simplex method, a derivative‐free nonlinear 

optimization method (Lagarias et al. 1998), to choose values for the decision variables and for 

ν ∈ {1, 2, 3, 4} with the goal of maximizing the total discounted cash flows that result from using the 

decision rules of the H2 policy corresponding to these variables on this sample path. Specifically, we 

apply the Nelder‐Mead method to the following sample path model:  

 

where , , and are analogous to , , and but are specific to sample path n; we make 

explicit the dependence of the H2 policy decision rules on the decision variables; and we evaluate the 

objective function using a backward recursion that relies on the discretized inventory set (see section 3). 

https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0013
https://onlinelibrary-wiley-com.libproxy.smu.edu.sg/doi/full/10.1111/poms.12946#poms12946-sec-0003
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Let and , with ν ∈ {1, 2, 3, 4}, denote the solution for this model found by the Nelder‐

Mead algorithm (we employ the one available in the GNU Scientific Library2).  

Step 3. Set and , with ν ∈ {1, 2, 3, 4}, equal to the averages of the values ’s and 

’s for ν ∈ {1, 2, 3, 4} obtained across the sample paths, that is, and 

, with ν ∈ {1, 2, 3, 4}.  

In our numerical study, we let  be equal to 5, because using larger values for  yields marginally smaller 

average optimality gaps (given the strong seasonality in the calibrated wind speed and electricity price 

models) but much longer execution times. It is impossible to perform a computational complexity 

analysis of our approach to determine the parameters of the H2 policy because a convergence proof for 

the Nelder–Meld simplex method is not available for a general function of two or more variables 

(Lagarias et al. 1998).  

We use steps analogous to Steps 1–3 above to determine the values of the parameters of the H3 and H3+ 

policies, except that we rely on exhaustive search based on a grid of possible values rather than the 

Nelder‐Mead algorithm, because it frequently becomes trapped in local minima for these policies. 

Notes 

1  https://www.law.cornell.edu/cfr/text/17/38.152 

2  https://www.gnu.org/software/gsl/ 
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