44 research outputs found

    Leg ulcers in sickle cell disease.

    Get PDF
    Sickle cell disease is a single amino acid molecular disorder of hemoglobin leading to its pathological polymerization, red cell rigidity that causes poor microvascular blood flow, with consequent tissue ischemia and infarction. The manifestations of this disease are protean.Among them, leg ulcers represent a particularly disabling and chronic complication, often associated with a more severe clinical course.Despite the fact that this complication has been recognized since the early times of SCD, there has been little improvement in the efficacy of its management and clinical outcome over the past 100 years. Recently, vasculopathic abnormalities involving abnormal vascular tone and activated, adhesive endothelium have been recognized as another pathway to end organ damage in sickle cell disease. Vasculopathy of sickle cell disease has been implicated in the development of pulmonary hypertension, stroke, leg ulceration and priapism, particularly associated with hemolytic severity, and reported in other severe hemolytic disorders. The authors present the proceedings from the Educational Session on Chronic leg ulcers in Sickle cell disease, held during the 4th Annual Sickle Cell Disease Research and Educational Symposium, on February 17, 2010 in Fort Lauderdale, Fla

    Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks

    Get PDF
    BACKGROUND. Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs) seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. RESULTS. We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. CONCLUSION. The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between variables.Italian Ministry of University and Scientific Research; National Institutes of Health & National Human Genome Research Institute (HG003354-01A2); Collegio Ghislieri, Pavia Italy fellowshi

    A hierarchical and modular approach to the discovery of robust associations in genome-wide association studies from pooled DNA samples

    Get PDF
    [Background] One of the challenges of the analysis of pooling-based genome wide association studies is to identify authentic associations among potentially thousands of false positive associations. [Results] We present a hierarchical and modular approach to the analysis of genome wide genotype data that incorporates quality control, linkage disequilibrium, physical distance and gene ontology to identify authentic associations among those found by statistical association tests. The method is developed for the allelic association analysis of pooled DNA samples, but it can be easily generalized to the analysis of individually genotyped samples. We evaluate the approach using data sets from diverse genome wide association studies including fetal hemoglobin levels in sickle cell anemia and a sample of centenarians and show that the approach is highly reproducible and allows for discovery at different levels of synthesis. [Conclusion] Results from the integration of Bayesian tests and other machine learning techniques with linkage disequilibrium data suggest that we do not need to use too stringent thresholds to reduce the number of false positive associations. This method yields increased power even with relatively small samples. In fact, our evaluation shows that the method can reach almost 70% sensitivity with samples of only 100 subjects.Supported by NHLBI grants R21 HL080463 (PS); R01 HL68970 (MHS); K-24, AG025727 (TP); K23 AG026754 (D.T.)

    Genetic Signatures of Exceptional Longevity in Humans

    Get PDF
    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity

    GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The genetic contribution to longevity in humans has been estimated to range from 15% to 25%. Only two genes, APOE and FOXO3, have shown association with longevity in multiple independent studies.We conducted a meta-analysis of genome-wide association studies including 6,036 longevity cases, age ≥90 years, and 3,757 controls that died between ages 55 and 80 years. We additionally attempted to replicate earlier identified single nucleotide polymorphism (SNP) associations with longevity.In our meta-analysis, we found suggestive evidence for the association of SNPs near CADM2 (odds ratio [OR] = 0.81; p value = 9.66 × 10(-7)) and GRIK2 (odds ratio = 1.24; p value = 5.09 × 10(-8)) with longevity. When attempting to replicate findings earlier identified in genome-wide association studies, only the APOE locus consistently replicated. In an additional look-up of the candidate gene FOXO3, we found that an earlier identified variant shows a highly significant association with longevity when including published data with our meta-analysis (odds ratio = 1.17; p value = 1.85×10(-10)).We did not identify new genome-wide significant associations with longevity and did not replicate earlier findings except for APOE and FOXO3. Our inability to find new associations with survival to ages ≥90 years because longevity represents multiple complex traits with heterogeneous genetic underpinnings, or alternatively, that longevity may be regulated by rare variants that are not captured by standard genome-wide genotyping and imputation of common variants.Netherlands Organisation of Scientific Research NWO Investments 175.010.2005.011 911-03-012 Research Institute for Diseases in the Elderly 014-93-015 RIDE2 Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) 050-060-810 Erasmus Medical Center Erasmus University, Rotterdam Netherlands Organization for the Health Research and Development (ZonMw) Research Institute for Diseases in the Elderly (RIDE) Ministry of Education, Culture and Science Ministry for Health, Welfare and Sports European Commission (DG XII) Municipality of Rotterdam National Institutes of Health National Institute on Aging (NIA) R01 AG005407 R01 AR35582 R01 AR35583 R01 AR35584 R01 AG005394 R01 AG027574 R01 AG027576 AG023629 R01AG29451 U01AG009740 RC2 AG036495 RC4 AG039029 P30AG10161 R01AG17917 R01AG15819 R01AG30146 U01-AG023755 U19-AG023122 NHLBI HHSN 268201200036C HHSN268200800007C N01HC55222 N01HC85079 N01HC85080 N01HC85081 N01HC85082 N01HC85083 N01HC 85086 HL080295 HL087652 HL105756 National Institute of Neurological Disorders and Stroke (NINDS) National Center for Advancing Translational Sciences, CTSI UL1TR000124 National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) DK063491 National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Center for Research Resources (NCRR) NIH Roadmap for Medical Research U01 AR45580 U01 AR45614 U01 AR45632 U01 AR45647 U01 AR45654 U01 AR45583 U01 AG18197 U01-AG027810 UL1 RR024140 NIAMS R01-AR051124 RC2ARO58973 National Heart, Lung and Blood Institute's Framingham Heart Study N01-HC-25195 Affymetrix, Inc N02-HL-6-4278 Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine Boston Medical Center National Institute of Arthritis, Musculoskeletal and Skin Diseases NIA R01 AR/AG 41398 NIH N01-AG-12100 NIA Intramural Research Program Hjartavernd (the Icelandic Heart Association) Althingi (the Icelandic Parliament) Illinois Department of Public Health Translational Genomics Research Institute Italian Ministry of Health ICS110.1/RF97.71 U.S. National Institute on Aging 263 MD 9164 263 MD 821336 Intramural Research Program of the NIH, National Institute on Aging 1R01AG028321 1R01HL09257

    A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

    Get PDF
    Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities

    Development and Implementation of the AIDA International Registry for Patients With Still's Disease

    Get PDF
    Objective: Aim of this paper is to present the design, construction, and modalities of dissemination of the AutoInflammatory Disease Alliance (AIDA) International Registry for patients with systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD), which are the pediatric and adult forms of the same autoinflammatory disorder. Methods: This Registry is a clinical, physician-driven, population- and electronic-based instrument implemented for the retrospective and prospective collection of real-world data. The collection of data is based on the Research Electronic Data Capture (REDCap) tool and is intended to obtain evidence drawn from routine patients' management. The collection of standardized data is thought to bring knowledge about real-life clinical research and potentially communicate with other existing and future Registries dedicated to Still's disease. Moreover, it has been conceived to be flexible enough to easily change according to future scientific acquisitions. Results: Starting from June 30th to February 7th, 2022, 110 Centers from 23 Countries in 4 continents have been involved. Fifty-four of these have already obtained the approval from their local Ethics Committees. Currently, the platform counts 290 users (111 Principal Investigators, 175 Site Investigators, 2 Lead Investigators, and 2 data managers). The Registry collects baseline and follow-up data using 4449 fields organized into 14 instruments, including patient's demographics, history, clinical manifestations and symptoms, trigger/risk factors, therapies and healthcare access. Conclusions: This international Registry for patients with Still's disease will allow a robust clinical research through collection of standardized data, international consultation, dissemination of knowledge, and implementation of observational studies based on wide cohorts of patients followed-up for very long periods. Solid evidence drawn from "real-life " data represents the ultimate goal of this Registry, which has been implemented to significantly improve the overall management of patients with Still's disease. NCT 05200715 available at

    Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

    Get PDF
    Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs

    A patient-driven registry on Behçet’s disease: the AIDA for patients pilot project

    Get PDF
    IntroductionThis paper describes the creation and preliminary results of a patient-driven registry for the collection of patient-reported outcomes (PROs) and patient-reported experiences (PREs) in Behçet’s disease (BD).MethodsThe project was coordinated by the University of Siena and the Italian patient advocacy organization SIMBA (Associazione Italiana Sindrome e Malattia di Behçet), in the context of the AIDA (AutoInflammatory Diseases Alliance) Network programme. Quality of life, fatigue, socioeconomic impact of the disease and therapeutic adherence were selected as core domains to include in the registry.ResultsRespondents were reached via SIMBA communication channels in 167 cases (83.5%) and the AIDA Network affiliated clinical centers in 33 cases (16.5%). The median value of the Behçet’s Disease Quality of Life (BDQoL) score was 14 (IQR 11, range 0–30), indicating a medium quality of life, and the median Global Fatigue Index (GFI) was 38.7 (IQR 10.9, range 1–50), expressing a significant level of fatigue. The mean Beliefs about Medicines Questionnaire (BMQ) necessity-concern differential was 0.9 ± 1.1 (range – 1.8–4), showing that the registry participants prioritized necessity belief over concerns to a limited extent. As for the socioeconomic impact of BD, in 104 out of 187 cases (55.6%), patients had to pay from their own pocket for medical exams required to reach the diagnosis. The low family socioeconomic status (p &lt; 0.001), the presence of any major organ involvement (p &lt; 0.031), the presence of gastro-intestinal (p &lt; 0.001), neurological (p = 0.012) and musculoskeletal (p = 0.022) symptoms, recurrent fever (p = 0.002), and headache (p &lt; 0.001) were associated to a higher number of accesses to the healthcare system. Multiple linear regression showed that the BDQoL score could significantly predict the global socioeconomic impact of BD (F = 14.519, OR 1.162 [CI 0.557–1.766], p &lt; 0.001).DiscussionPreliminary results from the AIDA for Patients BD registry were consistent with data available in the literature, confirming that PROs and PREs could be easily provided by the patient remotely to integrate physician-driven registries with complementary and reliable information
    corecore