100 research outputs found

    Діяльність ради народних міністрів української народної республіки у вітчизняній історіографії

    Get PDF
    (UA) Зроблена спроба здійснити аналіз сучасних досліджень діяльності Ради Народних Міністрів Української Народної Республіки на предмет повноти вивчення цього періоду української історії.(EN) The attempt to analyze the current research activities of the Council of Ministers of the Ukrainian People's Republic in terms of completeness of the study of this period of Ukrainian history is carried out

    The burial efficiency of organic carbon in the sediments of Lake Kinneret

    Get PDF
    Even though lake sediments constitute a significant long-term carbon sink, studies on the regulation of carbon burial in lakes sediments have, to date, been surprisingly few. We investigated to what degree the organic carbon (OC) being deposited onto the bottom of Lake Kinneret (Israel) is buried in the sediment at four different sites with varying degrees of oxygenation and varying supply of allochthonous particles from the River Jordan. For estimation of the OC burial efficiency (OC BE), i.e., the ratio between buried and deposited OC, we calculated OC burial from dated sediment cores, and calculated OC deposition using three different approaches. Calculation of OC deposition from sediment trap-derived mass deposition rates multiplied with the OC content of surface sediment yielded OC BE values that were at odds with published values for sediments dominated by autochthonous OC sources. Calculation via sediment trap data on organic matter flux collected within the Lake Kinneret monitoring program, as well as calculation of OC deposition as the sum of OC burial plus OC mineralization, returned fairly congruent estimates of OC BE (range 10-41%), but only if the sediment trap data were corrected for the proportion of resuspended particles in the traps. Differences in OC BE between sites were small, indicating that OC source (common to all sites) was a more important regulator of OC BE in Lake Kinneret than oxygen exposure or mineral particles characteristic

    Geographic and tourist position of Ternopil region as a factor of tourism development

    Get PDF
    The quantity of carbon dioxide (CO2) emissions from inland waters into the atmosphere varies, depending on spatial and temporal variations in the partial pressure of CO2 (pCO2) in waters. Using 22,664 water samples from 851 boreal lakes and 64 boreal streams, taken from different water depths and during different months we found large spatial and temporal variations in pCO2, ranging from below atmospheric equilibrium to values greater than 20,000 μatm with a median value of 1048 μatm for lakes (n = 11,538 samples) and 1176 μatm for streams (n = 11,126). During the spring water mixing period in April/May, distributions of pCO2 were not significantly different between stream and lake ecosystems (P > 0.05), suggesting that pCO2 in spring is determined by processes that are common to lakes and streams. During other seasons of the year, however, pCO2 differed significantly between lake and stream ecosystems (P < 0.0001). The variable that best explained the differences in seasonal pCO2 variations between lakes and streams was the temperature difference between bottom and surface waters. Even small temperature differences resulted in a decline of pCO2 in lake surface waters. Minimum pCO2 values in lake surface waters were reached in July. Towards autumn pCO2 strongly increased again in lake surface waters reaching values close to the ones found in stream surface waters. Although pCO2 strongly increased in the upper water column towards autumn, pCO2 in lake bottom waters still exceeded the pCO2 in surface waters of lakes and streams. We conclude that throughout the year CO2 is concentrated in bottom waters of boreal lakes, although these lakes are typically shallow with short water retention times. Highly varying amounts of this CO2 reaches surface waters and evades to the atmosphere. Our findings have important implications for up-scaling CO2 fluxes from single lake and stream measurements to regional and global annual fluxes

    Prediktion av sjödjup och sjövolym från topografiska data

    Get PDF
    Vi utvecklat en statistiskt modeller med målet att kunna prediktera sjödjup och sjövolym för alla svenska sjöar enbart utgående från kartbaserade data. Sjövolym kunde förklaras mycket väl utifrån sjöarea och den maximala lutningen i en 50 m bred buffertzon från strandlinjen (R2=0.92). Däremot kunde varken det maximala djupet eller medeldjupet modelleras utifrån kartbaserade data (R2<0.4). Trots den höga förklaringsgraden (92%) är prediktionen av volym för en enstaka sjö behäftad med en stor statistisk osäkerhet. Däremot blir det statistiska felet mycket mindre om man predikterar den genomsnittliga volymen för minst 5 sjöar åt gången. Volymmodellen kan därför användas för att prediktera den totala sjövolymen, och i förlängning vattnets uppehållstid för avrinningsområden som innehåller minst 5 sjöa

    Regional Variability and Drivers of Below Ice CO2 in Boreal and Subarctic Lakes

    Get PDF
    Northern lakes are ice-covered for considerable portions of the year, where carbon dioxide (CO2) can accumulate below ice, subsequently leading to high CO2 emissions at ice-melt. Current knowledge on the regional control and variability of below ice partial pressure of carbon dioxide (pCO(2)) is lacking, creating a gap in our understanding of how ice cover dynamics affect the CO2 accumulation below ice and therefore CO2 emissions from inland waters during the ice-melt period. To narrow this gap, we identified the drivers of below ice pCO(2) variation across 506 Swedish and Finnish lakes using water chemistry, lake morphometry, catchment characteristics, lake position, and climate variables. We found that lake depth and trophic status were the most important variables explaining variations in below ice pCO(2) across the 506 lakes(.) Together, lake morphometry and water chemistry explained 53% of the site-to-site variation in below ice pCO(2). Regional climate (including ice cover duration) and latitude only explained 7% of the variation in below ice pCO(2). Thus, our results suggest that on a regional scale a shortening of the ice cover period on lakes may not directly affect the accumulation of CO2 below ice but rather indirectly through increased mobility of nutrients and carbon loading to lakes. Thus, given that climate-induced changes are most evident in northern ecosystems, adequately predicting the consequences of a changing climate on future CO2 emission estimates from northern lakes involves monitoring changes not only to ice cover but also to changes in the trophic status of lakes.Peer reviewe

    Sources and emission of greenhouse gases in Danube Delta lakes

    Get PDF
    Production of methane and carbon dioxide as well as methane concentrations in surface waters and emissions to the atmosphere were investigated in two flow-through lake complexes (Uzlina-Isac and Puiu-Rosu-Rosulet) in the Danube Delta during post-flood conditions in May and low water level in September 2006. Retained nutrients fuelled primary production and remineralisation of bioavailable organic matter. This led to an observable net release of methane, particularly in the lakes Uzlina, Puiu and Rosu in May. Input from the Danube River, from redbuds and benthic release contributed to CH4 concentrations in surface waters. In addition to significant river input of CO2, this trace gas was released via aerobic remineralisation within the water column and in top sediments. Emission patterns of CO2 widely overlapped with those of CH4. Generally, greenhouse gas emissions peaked in the lake complex adjacent to the Danube River in May due to strong winds and decreased with increasing hydrological distance from the Danube River. Intense remineralisation of organic matter in the Danube Delta lakes results in a net source of atmospheric greenhouse gase

    Influence motor aktivity on physical development of students

    Get PDF
    The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts

    Опыт использования интерактивного элемента «лекция» в электронном учебном курсе «Основы САПР»

    Get PDF
    Many arctic landscapes are rich in lakes that store large quantities of organic carbon in their sediments. While there are indications of highly efficient carbon burial in high-latitude lakes, the magnitude and efficiency of carbon burial in arctic lake sediments, and thus their potential as carbon sinks, has not been studied systematically. We therefore investigated the burial efficiency of organic carbon (OC), defined as the ratio between OC burial and OC deposition onto the sediment, in seven contrasting lakes in western Greenland representing different arctic lake types. We found that the OC burial efficiency was generally low in spite of the differences between lake types (mean 22%, range 11–32%), and comparable to lakes in other climates with similar organic matter source and oxygen exposure time. Accordingly, post-depositional degradation of sediment organic matter was evident in the organic matter C:N ratio, δ13C and δ15N values during the initial ~50 years after deposition, and proceeds simultaneously with long-term changes in, e.g., productivity and climate. Pore water profiles of dissolved methane suggest that post-depositional degradation may continue for several centuries in these lakes, at very low rates. Our results demonstrate that the regulation of the sediment OC burial efficiency is no different in arctic lakes than in other lakes, implying that the efficiency of the carbon sink in lake sediments depends similarly on environmental conditions irrespective of latitude

    Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics

    Get PDF
    Global carbon dioxide (CO2) emission estimates from inland waters commonly neglect the ice-cover season. To account for CO2 accumulation below ice and consequent emissions into the atmosphere at ice-melt we combined automatically-monitored and manually- sampled spatially-distributed CO2 concentration measurements from a small boreal ice-covered lake in Sweden. In early winter, CO2 accumulated continuously below ice, whereas, in late winter, CO2 concentrations remained rather constant. At ice-melt, two CO2 concentration peaks were recorded, the first one reflecting lateral CO2 transport within the upper water column, and the second one reflecting vertical CO2 transport from bottom waters. We estimated that 66%–85% of the total CO2 accumulated in the water below ice left the lake at ice-melt, while the remainder was stored in bottom waters. Our results imply that CO2 accumulation under ice and emissions at ice-melt are more dynamic than previously reported, and thus need to be more accurately integrated into annual CO2 emission estimates from inland waters
    corecore