6 research outputs found

    OptoRiboGenetics : Post-transcriptional control of gene expression by light

    Get PDF
    Gene expression is tightly regulated in mammalian cells at the post transcriptional level and its precise manipulation has proven to be valuable for protein overexpression and gene therapy. Implementation of light-responsive photoreceptors into gene regulatory networks has been shown to enable spatiotemporal control modalities. The discovery of the bacterial light-oxygen-voltage (LOV) photoreceptor PAS-ANTAR-LOV (PAL) depicts a direct link between light-control and RNA biology and, thus, led to the foundation of optoribogenetics. Light-adapted PAL binds RNA stem-loop structures in a sequence dependent manner via its ANTAR domain. The control of gene expression as a function of light was achieved in mammalian cells when PAL-binding stem-loops were embedded in 5’ untranslated regions (UTRs) of mRNA transcripts. Increased light-control was achieved when PAL was fused to eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), an inhibitor of cap-dependent translation. Besides these "off-switches", "on-switches" were generated when PAL-binding stem-loops replaced the apical loop domain of pre-micro RNAs (pre-miRs) or short-hairpin RNAs (shRNAs). The performance of shRNAs was improved via single nucleotide insertions that conjoin the small-interfering- (si-) RNA to the PAL-responsive RNA stem-loops. Such shRNAs can be designed and applied in a near-arbitrary fashion with minimal efforts as exemplified by controlling the physiologic function of several target proteins. Taken together this thesis presents optoribogenetic methodologies which offer a hitherto unavailable access point that connects light-mediated precision with RNA biology in a genetically encodable system. These methods will facilitate the study of RNA and protein function in vivo. As next step, they could be used in future gene therapies or in basic research, for example to study the onset of cancer.OptoRiboGenetics - Posttranskriptionelle Kontrolle der Genexpression mit LichtDie Genexpression von SĂ€ugetierzellen wird maßgeblich auf post-transkriptioneller Ebene reguliert und das Eingreifen auf dieser Ebene hat sich sowohl bei der Überexpression von Proteinen als auch bei der Gentherapie bewĂ€hrt. Durch das Einbringen von Fotorezeptorproteinen in derartige Genregulationsnetzwerke können Eingriffe rĂ€umlich und zeitlich prĂ€zise gesteuert werden. Bis heute ist das bakterielle Licht-Sauerstoff-Spannungs- (LOV) Fotorezeptorprotein PAS-ANTAR-LOV (PAL) der einzig beschriebene fotosensible Rezeptor, welcher direkt mit RNA wechselwirkt. Diese Entdeckung legte den Grundstein fĂŒr die Optoribogenetik. Licht-aktiviertes PAL bindet RNA Stammschleifen sequenzabhĂ€ngig durch eine verĂ€nderte ZugĂ€nglichkeit dessen ANTAR DomĂ€ne. Eine lichtabhĂ€ngige Kontrolle der Genexpression konnte durch den Einbau von PAL-bindenden RNA-Stammschleifen in den 5‘ nicht-translatierten Bereich (5’UTR) bestimmter mRNA Transkripte erreicht werden. Durch die Fusion von PAL mit dem eukaryotischen Translationsinitiationsfaktor 4E bindenden Protein 1 (4E-BP1), einem Inhibitor der Cap-abhĂ€ngigen Translation, konnten die lichtabhĂ€ngigen Unterschiede bei der Genexpression weiter verstĂ€rkt werden. Neben derartigen "off-switches" können auch "on-switches" generiert werden, indem PAL-bindende RNA-Stammschleifen in die apikale DomĂ€ne von pre-micro RNAs (pre-miRs) oder short-hairpin RNAs (shRNAs) eingebaut werden. Die von den shRNA hervorgerufenen lichtabhĂ€ngigen Unterschiede in der Genexpression konnte durch das Einsetzen zusĂ€tzlicher Nukleotide zwischen der small-interfering (si-) RNA und den PAL-bindenden RNA-Stammschleifen verstĂ€rkt werden. Derartige shRNAs können mit nur geringem Aufwand gegen nahezu jedes Wunschgen gerichtet werden, wie durch die Kontrolle der physiologischen Funktion von drei Zielproteinen gezeigt wurde. Zusammengefasst beschreibt diese Dissertation optoribogenetische Methoden, welche den direkten Eingriff auf die RNA-Ebene mit der PrĂ€zision von Licht und als vollstĂ€ndig genetisch kodierbares System erlauben. Damit können diese Methoden zukĂŒnftige in vivo Untersuchungen von AblĂ€ufen auf RNA- und Proteinebene vereinfachen. Ferner könnten diese Methoden in zukĂŒnftigen Gentherapien und der Grundlagenforschung genutzt werden, beispielsweise um die Entstehung von Krebs besser verstehen zu können

    A blue light receptor that mediates RNA binding and translational regulation

    Get PDF
    Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 ”M in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL–RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities

    Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine

    Get PDF
    In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins

    Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM)

    No full text
    corecore