68 research outputs found

    Environ Mol Mutagen

    Get PDF
    Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Methylation of Alu and long interspersed nucleotide elements (LINE-1) is a well-established measure of DNA methylation often used in epidemiologic studies. Yet, few studies have examined the effects of host factors on LINE-1 and Alu methylation in children. We characterized the relationship of age, sex, and prenatal exposure to persistent organic pollutants (POPs), dichlorodiphenyl trichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and polybrominated diphenyl ethers (PBDEs), with DNA methylation in a birth cohort of Mexican-American children participating in the CHAMACOS study. We measured Alu and LINE-1 methylation by pyrosequencing bisulfite-treated DNA isolated from whole blood samples collected from newborns and nine-year old children (n\ue2\u20ac\u2030=\ue2\u20ac\u2030358). POPs were measured in maternal serum during late pregnancy. Levels of DNA methylation were lower in nine-year olds compared to newborns and were higher in boys compared to girls. Higher prenatal DDT/E exposure was associated with lower Alu methylation at birth, particularly after adjusting for cell type composition (P\ue2\u20ac\u2030=\ue2\u20ac\u20300.02 for o,p' -DDT). Associations of POPs with LINE-1 methylation were only identified after examining the co-exposure of DDT/E with PBDEs simultaneously. Our data suggest that repeat element methylation can be an informative marker of epigenetic differences by age and sex and that prenatal exposure to POPs may be linked to hypomethylation in fetal blood. Accounting for co-exposure to different types of chemicals and adjusting for blood cell types may increase sensitivity of epigenetic analyses for epidemiological studies.P01 ES009605/ES/NIEHS NIH HHS/United StatesP01 ES009605/ES/NIEHS NIH HHS/United StatesR01 ES015572/ES/NIEHS NIH HHS/United StatesR01 OH007400/OH/NIOSH CDC HHS/United States2015-04-27T00:00:00

    Quality Metrics for Stem Cell-Derived Cardiac Myocytes

    Get PDF
    Summary Advances in stem cell manufacturing methods have made it possible to produce stem cell-derived cardiac myocytes at industrial scales for in vitro muscle physiology research purposes. Although FDA-mandated quality assurance metrics address safety issues in the manufacture of stem cell-based products, no standardized guidelines currently exist for the evaluation of stem cell-derived myocyte functionality. As a result, it is unclear whether the various stem cell-derived myocyte cell lines on the market perform similarly, or whether any of them accurately recapitulate the characteristics of native cardiac myocytes. We propose a multiparametric quality assessment rubric in which genetic, structural, electrophysiological, and contractile measurements are coupled with comparison against values for these measurements that are representative of the ventricular myocyte phenotype. We demonstrated this procedure using commercially available, mass-produced murine embryonic stem cell- and induced pluripotent stem cell-derived myocytes compared with a neonatal mouse ventricular myocyte target phenotype in coupled in vitro assays

    Functional Differences in Engineered Myocardium from Embryonic Stem Cell-Derived versus Neonatal Cardiomyocytes

    Get PDF
    Stem cell-derived cardiomyocytes represent unique tools for cell- and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated. We reasoned that physiological metrics of engineered cardiac tissues offer a means of comparison. We built laminar myocardium engineered from cardiomyocytes that were differentiated from mouse embryonic stem cell-derived cardiac progenitors or harvested directly from neonatal mouse ventricles, and compared their anatomy and physiology in vitro. Tissues assembled from progenitor-derived myocytes and neonate myocytes demonstrated similar cytoskeletal architectures but different gap junction organization and electromechanical properties. Progenitor-derived myocardium had significantly less contractile stress and slower longitudinal conduction velocity than neonate-derived myocardium, indicating that the developmental state of the cardiomyocytes affects the electromechanical function of the resultant engineered tissue. These data suggest a need to establish performance metrics for future stem cell applications

    Implementation of increased physical therapy intensity for improving walking after stroke: Walk 'n Watch protocol for a multi-site stepped-wedge cluster randomized controlled trial

    Get PDF
    Clinical practice guidelines support structured, progressive protocols for improving walking after stroke. Yet, practice is slow to change, evidenced by the little amount of walking activity in stroke rehabilitation units. Our recent study (n=75) found that a structured, progressive protocol integrated with typical daily physical therapy improved walking and quality of life measures over usual care. Research therapists progressed the intensity of exercise by using heart rate and step counters worn by the participants with stroke during therapy. To have the greatest impact, our next step is to undertake an implementation trial to change practice across stroke units where we enable the entire unit to use the protocol as part of standard of care. What is the effect of introducing structured, progressive exercise (termed the Walk 'n Watch protocol) to standard of care on the primary outcome of walking in adult participants with stroke over the hospital inpatient rehabilitation period? Secondary outcomes will be evaluated and include quality of life.Methods and sample size estimates: This national, multisite clinical trial will randomize 12 sites using a stepped-wedge design where each site will be randomized to deliver Usual Care initially for 4, 8, 12 or 16-months (three sites for each duration). Then, each site will switch to the Walk 'n Watch phase for the remaining duration of a total 20-month enrolment period. Each participant will be exposed to only one of Usual Care or Walk 'n Watch. The trial will enrol a total of 195 participants with stroke to achieve a power of 80% with a Type I error rate of 5%, allowing for 20% dropout. Participants will be medically stable adults post-stroke and able to take 5 steps with a maximum physical assistance from one therapist. The Walk 'n Watch protocol focuses on completing a minimum of 30-minutes of weight-bearing, walking-related activities (at the physical therapists' discretion) that progressively increases in intensity informed by activity trackers measuring heart rate and step number.Study outcome(s): The primary outcome will be the change in walking endurance, measured by the Six-Minute Walk Test, from Baseline (T1) to 4-weeks (T2). This change will be compared across Usual Care and Walk 'n Watch phases using a linear mixed-effects model. Additional physical, cognitive, and quality of life outcomes will be measured at T1, T2, and 12-months post-stroke (T3) by a blinded assessor. The implementation stepped-wedge cluster-randomized trial enables the protocol to be tested under real-world conditions, involving all clinicians on the unit. It will result in all sites and all clinicians on the unit to gain expertise in protocol delivery. Hence, a deliberate outcome of the trial is facilitating changes in best practice to improve outcomes for participants with stroke in the trial, and for the many participants with stroke admitted after the trial ends

    Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    Get PDF
    BACKGROUND: Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. METHODS: In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. RESULTS: A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9]). CONCLUSIONS: Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. TRIAL REGISTRATION: ClinicalTrials.gov [NCT00984763]

    Self-Organization of Muscle Cell Structure and Function

    Get PDF
    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton

    Characterization of the Interaction of Full-Length HIV-1 Vif Protein with its Key Regulator CBFβ and CRL5 E3 Ubiquitin Ligase Components

    Get PDF
    Human immunodeficiency virus-1 (HIV-1) viral infectivity factor (Vif) is essential for viral replication because of its ability to eliminate the host's antiviral response to HIV-1 that is mediated by the APOBEC3 family of cellular cytidine deaminases. Vif targets these proteins, including APOBEC3G, for polyubiquitination and subsequent proteasome-mediated degradation via the formation of a Cullin5-ElonginB/C-based E3 ubiquitin ligase. Determining how the cellular components of this E3 ligase complex interact with Vif is critical to the intelligent design of new antiviral drugs. However, structural studies of Vif, both alone and in complex with cellular partners, have been hampered by an inability to express soluble full-length Vif protein. Here we demonstrate that a newly identified host regulator of Vif, core-binding factor-beta (CBFβ), interacts directly with Vif, including various isoforms and a truncated form of this regulator. In addition, carboxyl-terminal truncations of Vif lacking the BC-box and cullin box motifs were sufficient for CBFβ interaction. Furthermore, association of Vif with CBFβ, alone or in combination with Elongin B/C (EloB/C), greatly increased the solubility of full-length Vif. Finally, a stable complex containing Vif-CBFβ-EloB/C was purified in large quantity and shown to bind purified Cullin5 (Cul5). This efficient strategy for purifying Vif-Cul5-CBFβ-EloB/C complexes will facilitate future structural and biochemical studies of Vif function and may provide the basis for useful screening approaches for identifying novel anti-HIV drug candidates

    Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors

    Get PDF
    Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question

    Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation

    Get PDF
    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
    corecore