63 research outputs found
Shared Roots: A geochemical investigation of basaltic andesites to understand magmatic cogenesis at the Middle Sister and South Sister volcanoes, central Oregon
The Middle Sister and South Sister volcanoes, near Bend, Oregon, are overlapping, active Cascade Arc stratovolcanoes which share a complex, contemporaneous eruptive history. This history is characterized by an extreme compositional diversity of lavas erupted in alternating phases of high activity from one neighboring volcano to the other, with both vents producing material ranging from basaltic andesite to rhyolite. This system is understood to be predominantly fed by basaltic andesites fractionated from partial mantle melts within the lower crust, but magma compositions are additionally impacted by mixing, assimilation, and crustal contamination while in transit to the surface. Thus, the subterranean relationship between these volcanoes is, at present, poorly understood, with relatively little work having been done to identify and constrain the extent of reservoir interconnectivity and magma sharing which may influence eruptive behaviors in the past and inform understandings of present-day activity. Here, we investigate chemical zoning in minerals from three basaltic andesite lavas–two from Middle Sister and one from South Sister–as a record of magmatic interactions impacting the more primitive, mafic material supplied to each vent. By identifying and correlating similar mineral populations found in each lava, we identify interactions between three discrete magmatic components, recorded as distinctive chemical bands in plagioclase, olivine, and pyroxene phenocrysts. Two of these magmatic components are observed in all three units of study, shown to represent consistent recharge of basaltic andesite magma via a two-part mixing process during the interval from 48 ka to 21 ka. At Middle Sister, the studied basaltic andesites are interpreted as chemically consistent eruptions of this two-part hybrid magma from 48 ka to 22 ka. At South Sister, mineral zones record a mixing event between a similar hybrid magma and a third, chemically distinct magmatic component, suggestive of independent processes and discrete crustal reservoirs beneath Middle Sister and South Sister around 22 to 21 ka. Future work is proposed to investigate the origins of each of these components via trace element analysis and thermobarometry, in order to assess the similarities and differences in melt sourcing, magma transit, and crustal contamination at Middle Sister and South Sister
Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation.
Induction of antigen-specific CD8(+) T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8(+) T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/10(6) peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8(+) T cells, but not antibodies, correlates with sterile protection and delay in time to patency (P(corrected)=0.005). Vaccine-induced CD8(+) T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells
Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses
Investigation of choroid plexus variability in schizophrenia-spectrum disorders — insights from a multimodal study
Abstract
Previous studies have suggested that choroid plexus (ChP) enlargement occurs in individuals with schizophrenia-spectrum disorders (SSD) and is associated with peripheral inflammation. However, it is unclear whether such an enlargement delineates a biologically defined subgroup of SSD. Moreover, it remains elusive how ChP is linked to brain regions associated with peripheral inflammation in SSD. A cross-sectional cohort of 132 individuals with SSD and 107 age-matched healthy controls (HC) underwent cerebral magnetic resonance imaging (MRI) and clinical phenotyping to investigate the ChP and associated regions. A case-control comparison of ChP volumes was conducted, and structural variance was analyzed by employing the variability ratio (VR). K-means clustering analysis was used to identify subgroups with distinct patterns of the ventricular system, and the clusters were compared in terms of demographic, clinical, and immunological measures. The relationship between ChP volumes and brain regions, previously associated with peripheral inflammation, was investigated. We did not find a significant enlargement of the ChP in SSD compared to HC but detected an increased VR of ChP and lateral ventricle volumes. Based on these regions, we identified 3 clusters with differences in cognitive measures and possibly inflammatory markers. Larger ChP volume was associated with higher volumes of hippocampus, putamen, and thalamus in SSD but not in HC. This study suggests that ChP variability, but not mean volume, is increased in individuals with SSD, compared to HC. Larger ChP volumes in SSD were associated with higher volumes of regions previously associated with peripheral inflammation
Association of symptom severity and cerebrospinal fluid alterations in recent onset psychosis in schizophrenia-spectrum disorders – an individual patient data meta-analysis
Neuroinflammation and blood-cerebrospinal fluid barrier (BCB) disruption could be key elements in schizophrenia-spectrum disorderś(SSDs) etiology and symptom modulation. We present the largest two-stage individual patient data (IPD) meta-analysis, investigating the association of BCB disruption and cerebrospinal fluid (CSF) alterations with symptom severity in first-episode psychosis (FEP) and recent onset psychotic disorder (ROP) individuals, with a focus on sex-related differences. Data was collected from PubMed and EMBASE databases. FEP, ROP and high-risk syndromes for psychosis IPD were included if routine basic CSF-diagnostics were reported. Risk of bias of the included studies was evaluated. Random-effects meta-analyses and mixed-effects linear regression models were employed to assess the impact of BCB alterations on symptom severity. Published (6 studies) and unpublished IPD from n = 531 individuals was included in the analyses. CSF was altered in 38.8 % of individuals. No significant differences in symptom severity were found between individuals with and without CSF alterations (SMD = -0.17, 95 %CI −0.55–0.22, p = 0.341). However, males with elevated CSF/serum albumin ratios or any CSF alteration had significantly higher positive symptom scores than those without alterations (SMD = 0.34, 95 %CI 0.05–0.64, p = 0.037 and SMD = 0.29, 95 %CI 0.17–0.41p = 0.005, respectively). Mixed-effects and simple regression models showed no association (p > 0.1) between CSF parameters and symptomatic outcomes. No interaction between sex and CSF parameters was found (p > 0.1). BCB disruption appears highly prevalent in early psychosis and could be involved in positive symptomś severity in males, indicating potential difficult-to-treat states. This work highlights the need for considering BCB breakdown and sex-related differences in SSDs clinical trials and treatment strategies
Analysis of human B‐cell responses following ChAd63‐MVA MSP1 and AMA1 immunization and controlled malaria infection
Acquisition of non‐sterilizing natural immunity to Plasmodium falciparum malaria has been shown in low transmission areas following multiple exposures. However, conflicting data from endemic areas suggest that the parasite may interfere with the induction of effective B‐cell responses. To date, the impact of blood‐stage parasite exposure on antigen‐specific B cells has not been reported following controlled human malaria infection (CHMI). Here we analysed human B‐cell responses in a series of Phase I/IIa clinical trials, which include CHMI, using candidate virus‐vectored vaccines encoding two blood‐stage antigens: merozoite surface protein 1 (MSP1) and apical membrane antigen 1 (AMA1). Previously vaccinated volunteers show boosting of pre‐existing antigen‐specific memory B‐cell (mBC) responses following CHMI. In contrast, unvaccinated malaria‐naive control volunteers developed an mBC response against MSP1 but not AMA1. Serum IgG correlated with the mBC response after booster vaccination but this relationship was less well maintained following CHMI. A significant reduction in peripheral MSP1‐specific mBC was observed at the point of diagnosis of blood‐stage infection. This was coincident with a reduction in peripheral blood B‐cell subsets expressing CXCR3 and elevated serum levels of interferon‐γ and CXCL9, suggesting migration away from the periphery. These CHMI data confirm that mBC and antibody responses can be induced and boosted by blood‐stage parasite exposure, in support of epidemiological studies on low‐level parasite exposure
Multiple wheat genomes reveal global variation in modern breeding
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars
Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01
We study whether the relationship between the state unemployment rate at the time of conception
and infant health, infant mortality and maternal characteristics in the United States
has changed over the years 1980-2004. We use microdata on births and deaths for years
1980-2004 and find that the relationship between the state unemployment rate at the time of
conception and infant mortality and birthweight changes over time and is stronger for blacks
than whites. For years 1980-1989 increases in the state unemployment rate are associated
with a decline in infant mortality among blacks, an effect driven by mortality from gestational
development and birth weight, and complications of placenta while in utero. In contrast,
state economic conditions are unrelated to black infant mortality in years 1990-2004 and
white infant mortality in any period, although effects vary by cause of death. We explore potential
mechanisms for our findings and, including mothers younger than 18 in the analysis,
uncover evidence of age-related maternal selection in response to the business cycle. In
particular, in years 1980-1989 an increase in the unemployment rate at the time of conception
is associated with fewer babies born to young mothers. The magnitude and direction of
the relationship between business cycles and infant mortality differs by race and period.
Age-related selection into motherhood in response to the business cycle is a possible explanation
for this changing relationship
Aurora A–Selective Inhibitor LY3295668 Leads to Dominant Mitotic Arrest, Apoptosis in Cancer Cells, and Shows Potent Preclinical Antitumor Efficacy
Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform–selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A–selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition–associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A–selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent
Using crystals in lava flows to understand the pre-eruptive processes at the Three Sisters Volcanoes, Central Oregon
To accurately assess volcanic hazards, a comprehensive history of a volcano’s pre-eruptive (magmatic) activity is required. Evidence of processes that take place are recorded in rocks, but more specifically crystals that they contain. Therefore, this investigation aims to uncover the key developments which drove recent volcanic activity between two adjacent volcanoes, Middle Sister and South Sister, a popular recreation site in central Oregon. We will characterize physical and chemical evidence preserved in minerals for six important lava flows, marking three distinct periods of activity at the two volcanoes. In doing so, we hope to better understand the processes that resulted in these major shifts in eruptive behavior over a span of several thousand years, driving changes in levels of explosivity and activity throughout this period of shared volcanic history. This will require a field expedition to the volcanoes to make observations and collect samples. The samples will then be analyzed using several analytical techniques, aimed at identifying mineral distributions, physical characteristics, and chemistry. These data and observations will inform us about the underground backgrounds of each of the lavas analyzed, in order to paint a more detailed picture of the processes influencing eruptive patterns at the Three Sisters
- …
