131 research outputs found
N of 1, two contemporary arm, randomised controlled clinical trial for bilateral epicondylitis: a new study design
Objective To investigate the use of a novel study design in analysis of bilateral elbow pain
Post-exposure rate of tuberculosis infection among health care workers measured with tuberculin skin test conversion after unprotected exposure to patients with pulmonary tuberculosis: 6-year experience in an Italian teaching hospital
BACKGROUND: This study assesses the risk of LTBI at our Hospital among HCWs who have been exposed to TB patients with a delayed diagnosis and respiratory protection measures were not implemented. METHODS: All HCWs exposed to a patient with cultural confirmed pulmonary TB and respiratory protection measures were not implemented were included. Data on TST results performed in the past (defined as T0) were recorded. TST was performed twice: first, immediately after exposure to an index patient (T1) and three months later (T2). The period of time between T0 and T1 was used to calculate he annual rate of tuberculosis infection (ARTI), while le period of time between T1 and T2 was used to calculate the post exposure annual rate of tuberculosis infection (PEARTI). RESULTS: Fourteen index patients were admitted; sputum smear was positive in 7 (58.3%), 4 (28.6%) were non-Italian born patients. 388 HCWs were exposed to index patients, a median of 27 (12-39) HCW per each index patient. One hundred eighty (46.4%) HCWs received BCG in the past. One hundred twenty two HCWs (31%) were TST positive at a previous routine screening and not evaluated in this subset. Among the remaining 255 HCWs with negative TST test in the past, TST at T1 was positive in 11 (4.3%). ARTI was 1.6 (95% CI 0.9-2.9) per 100 PY. TST at T2 was positive in 9 (3.7%) HCWs, that were TST negative at T1. PEARTI was 26 (95% CI 13.6-50) per 100 PY. At univariate analysis, older age was associated with post exposure latent tuberculosis infection (HR 1.12; 95% CI 1.03-1.22, p=0.01). CONCLUSIONS: PEARTI was considerably higher among HCWs exposed to index patients than ARTI. These data underscore the overwhelming importance of performing a rapid diagnosis, as well as implementing adequate respiratory protection measures when TB is suspected
The 17-Item Computer Vision Symptom Scale Questionnaire (CVSS17): Translation, Validation and Reliability of the Italian Version
Background. To validate the 17-item Computer Vision Symptom Scale questionnaire (CVSS17) in Italian. Methods. Cross-sectional validation study on video terminal (VDT) users and a reference sample of subjects not working at a VDT (control group), cognitively able to respond to a health status interview. The Italian self-administered version of the CVSS17 questionnaire was administered to all participants. The reliability and validity of the Italian translation of the CVSS17 were tested using standard statistical methods for questionnaire validation. The Rasch analysis was performed as well. Results. A total of 216 subjects were enrolled. Concerning the reliability, the Cronbach’s alpha coefficient was 0.925 (from 0.917 to 0.924), and the test–retest stability was 0.91 (<0.001). Concerning the validity, the control group had significantly better scores, and there were good correlations between responses to the CVSS17 and analogous domains of the GSS. Conclusion. The Italian version of the CVSS17 has shown psychometric properties comparable to those of the Spanish version, having good validity, discriminatory power, internal consistency and reliability. The questionnaire is a specific measure of vision-related quality of life in Italian-speaking VDT workers and can be used both in clinical practice and for research purposes
In vivo studies on antibiotic combination for the treatment of carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis protocol
ObjectiveThere is poor evidence to determine the superiority of combination regimens versus monotherapy against infections due to carbapenem-resistant (CR) Gram-negative bacteria. In vivo models can simulate the pathophysiology of infections in humans and assess antibiotic efficacy. We aim to investigate in vivo effects of antibiotic combination on mortality and disease burden for infections due to CR Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacteriaceae and provide an unbiased overview of existing knowledge. The results of the study can help prioritising future research on the most promising therapies against CR bacteria.Methods and analysisThis protocol was formulated using the Systematic Review Protocol for Animal Intervention Studies (SYRCLE) Checklist. Publications will be collected from PubMed, Scopus, Embase and Web of Science. Quality checklists adapted by Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies and SYRCLE's risk of bias tool will be used. If the meta-analysis seems feasible, the ES and the 95% CI will be analysed. The heterogeneity between studies will be assessed by I2 test. Subgroup meta-analysis will be performed when possible to assess the impact of the studies on efficacy of the treatments. Funnel plotting will be used to evaluate the risk of publication bias.DisseminationThis systematic review and meta-analysis is part of a wider research collaboration project, the COmbination tHErapy to treat sepsis due to carbapenem-Resistant bacteria in adult and paediatric population: EvideNCE and common practice (COHERENCE) study that includes also the analyses of in vitro and human studies. Data will be presented at international conferences and the results will be published in peer-reviewed journals.PROSPERO registration numberCRD42019128104(available at: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019128104)
Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli.
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35ES0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria
Relationship between immune response to SARS-CoV2 vaccines and development of breakthrough infection in solid organ transplant recipients: the CONTRAST cohort
Background: SARS-CoV-2 vaccination in solid organ transplant (SOT) is associated with poorer antibody response (AbR) compared to non-SOT recipients. However, its impact on the risk of breakthrough infection (BI) should yet be assessed. Methods: Single-center prospective longitudinal cohort study enrolling adult SOT recipients who received SARS-CoV2 vaccination during 1-year period from February 2021, and followed-up to April 30th 2022. Patients were tested for AbR at multiple timepoints. Primary endpoint was BI (laboratory confirmed SARS-CoV2 infection ≥14 days after 2nd dose). Immunization (positive AbR) was considered an intermediate state between vaccination and BI. Probabilities of being in vaccination, immunization and BI states were obtained for each type of graft and vaccination sequence with multistate survival analysis, then multivariable logistic regression was performed to analyse the risk of BI in AbR levels. Results: 614 SOT (275 kidney, 163 liver, 137 heart, 39 lung) recipients were included. Most patients (84.7%) received three vaccine doses, the first two consisted of BNT162b2 and mRNA-1273 in 73.5% and 26.5% of cases, respectively; while at the third dose mRNA-1273 was administered in 59.8% of patients. Overall, 75.4% of patients reached immunization and 18.4% developed BI. Heart transplant recipients showed lowest probability of immunization (0.418) and highest of BI (0.323), all-mRNA-1273 vaccine-sequence showed higher probability of immunization (0.732) and lowest of BI (0.098). Risk of BI was higher for non-high-level AbR, younger age and shorter time from transplant. Conclusions: SOT patients with non-high-level AbR, shorter time from transplantation, and heart recipients are at highest risk of BI
Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units
Purpose: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). Methods: In this retrospective–prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. Results: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55–69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89–175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil–lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. Conclusion: Daily values or trends over time of parameters associated with acute organ dysfunction, acid–base derangement, coagulation impairment, or systemic inflammation were associated with patient survival
A one health framework to estimate the cost of antimicrobial resistance
Abstract
Objectives/purpose
The costs attributable to antimicrobial resistance (AMR) remain theoretical and largely unspecified. Current figures fail to capture the full health and economic burden caused by AMR across human, animal, and environmental health; historically many studies have considered only direct costs associated with human infection from a hospital perspective, primarily from high-income countries. The Global Antimicrobial Resistance Platform for ONE-Burden Estimates (GAP-ON€) network has developed a framework to help guide AMR costing exercises in any part of the world as a first step towards more comprehensive analyses for comparing AMR interventions at the local level as well as more harmonized analyses for quantifying the full economic burden attributable to AMR at the global level.
Methods
GAP-ON€ (funded under the JPIAMR 8th call (Virtual Research Institute) is composed of 19 international networks and institutions active in the field of AMR. For this project, the Network operated by means of Delphi rounds, teleconferences and face-to-face meetings. The resulting costing framework takes a bottom-up approach to incorporate all relevant costs imposed by an AMR bacterial microbe in a patient, in an animal, or in the environment up through to the societal level.
Results
The framework itemizes the epidemiological data as well as the direct and indirect cost components needed to build a realistic cost picture for AMR. While the framework lists a large number of relevant pathogens for which this framework could be used to explore the costs, the framework is sufficiently generic to facilitate the costing of other resistant pathogens, including those of other aetiologies.
Conclusion
In order to conduct cost-effectiveness analyses to choose amongst different AMR-related interventions at local level, the costing of AMR should be done according to local epidemiological priorities and local health service norms. Yet the use of a common framework across settings allows for the results of such studies to contribute to cumulative estimates that can serve as the basis of broader policy decisions at the international level such as how to steer R&D funding and how to prioritize AMR amongst other issues. Indeed, it is only by building a realistic cost picture that we can make informed decisions on how best to tackle major health threats
SCOR: A secure international informatics infrastructure to investigate COVID-19
Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale
- …