94 research outputs found

    Utilisation d'un réseau de neurones pour appliquer le modÚle de Muskingum aux réseaux d'assainissement

    Get PDF
    L'application du modÚle de Muskingum pour simuler l'écoulement à surface libre dans les canaux d'irrigation a été largement utilisée et validée. Par extension, ce modÚle est également employé pour simuler les écoulements en réseau d'assainissement. Or, nous avons pu montrer des erreurs allant jusqu'à 80% du débit de pointe entre le modÚle de Muskingum à paramÚtres fixes et le modÚle de référence de Barré de Saint-Venant. Nous proposons une nouvelle paramétrisation du modÚle de Muskingum pour l'écoulement en collecteur circulaire en réseau d'assainissement et ceci pour un large domaine de longueurs, pentes et diamÚtres de collecteurs. Ce nouveau modÚle non-linéaire a été calé par minimisation d'une fonction objectif traduisant la proximité du modÚle proposé avec les résultats de la résolution des équations de Barré de Saint-Venant pour des hydrogrammes rectangulaires. Un réseau de neurones a été utilisé pour paramétrer le modÚle. Cette nouvelle application des équations de Muskingum permet l'obtention d'erreurs relatives moyennes inférieures à 6% sur la valeur et l'instant du débit de pointe, ceci dans le cas de collecteurs ayant jusqu'à 6500 m de longueur, des pentes variant entre 0.5% et 1% et des diamÚtres entre 150 et 2500 mm et des hydrogrammes de débit de pointe proche de la capacité du collecteur. Le modÚle a également été validé sur un hydrogramme de forme quelconque.Certain towns and cities frequently suffer from failures of their sewer networks, especially in rainy weather. Pollution of the host environment, as the direct consequence of occasionally untimely spills, is not appreciated by the natural environment or the human population. Improving the quality of the natural environment therefore involves an increasingly sophisticated control of the hydraulics and the pollutant load in drainage systems, and especially in sewer networks. Real-time management of sewer networks can provide a solution for the protection of the natural environment. In this case, control strategies are provided for the sluices and pumps of the sewer network during a rainy event to minimize the urban effluent. Moreover, a better understanding and modeling of the transport of pollution in the mains is required.To that end, not only must the hydraulic operation of the mains be correctly modeled (shape of the hydrograph, value and temporal position of the peak flow), but this numerical model must also be stable and converge towards the solution, irrespective of the initial conditions for modeling of the pollution, and the computer time must be compatible with the requirements of real-time management. The most representative model of unidimensional flows is that of Barré de Saint-Venant (1871). The non-linearity of the model, resulting in difficulties in solving these equations, together with the computer time required, are such that not all the criteria for a real-time application can be met. The conceptual equations model of Muskingum is another model that can be used.In the case of round sewerage mains with a slope ranging from practically nil to a few per-thousandths and a few kilometers long, the K and α coefficients traditionally used do not yield correct results with respect to the benchmark model of Barré de Saint-Venant. To keep the advantages of the simplification of the Muskingum equations, and to avoid having to solve the Barré de Saint Venant system, we propose new parameters for the Muskingum equations and we use optimization and correlation calculation techniques using neural networks.In modeling the mains of a sewer network, the discretization of their length, within the usual limits [50 m; 1000 m] is chosen empirically. This discretization plays an essential part in the propagation of the wave in a main. To take this effect into account, the round main of length L is discretized into N sections, and K is expressed on the basis of the maximum speed of the flow Vmax. The model setting parameters are now N and α, and will be calibrated for a wide range of slopes, lengths and flow rates for round mains with a constant roughness.The calculation procedure is as follows: - Setting of the optimal values of N and alpha giving results close to those calculated by Barré de Saint Venant; - Determination of correlations of the parameters N and alpha according to the slope, length and diameter; - Validation of the Muskingum model in relation to that of Barré de Saint-Venant. The parameters alpha and N are set by minimizing an objective function giving the agreement between the results of the hydraulic simulations by Barré de Saint-Venant and the simulations of the proposed model. The objective function is defined by the sum of the relative quadratic deviations of the values and times of maximum flow rates. The maximum errors are in fact reduced from 90% to 10% on peak flows and from 30% to 10% at a given point in time during the peak flow. The mean error is reduced forty-fold for peak flow, and five-fold in the temporal position, with a reduction of the same order for the standard deviations. Correlations of alpha and N are sought according to the slope, length and diameter of the mains modeled. As linear type relations failed to provide satisfactory results, the multi-layer Perceptron type (artificial) neural network model was used. The model includes 3 inputs and 2 outputs. The first, essential stage consists of finding the optimal number of neurons in the masked layer. It is important to mention that despite maximum errors of 40% and 20% on the prediction of time and peak flow rate, mean errors of only 3% and 4% are observed. Given this result, 4 neurons were chosen in the masked layer. This model therefore includes 3 inputs, 4 neurons in the masked layer, and 2 outputs. Following the learning phase with the results of the optimization phase, the so-called prediction phase was then performed. This consists of using the neural network with data with intermediary values with respect to those used in the learning phase. The neural network is used solely to predict values within the minimum and maximum limits of the learning phase. The prediction (or validation) phase revealed that the mean errors are in the order of 2.7% for the peak flow value and 5.5% for the instant of the same flow. The choice of 4 neurons in the masked layer during the prediction phase gives results with the same order of magnitude as in the learning phase, thus validating the structure of the neural network chosen. Subsequently, the proximity of the value and of the time position of the maximum flow rate for the propagation of rectangular hydrograms was studied. The performance of the model proposed is now verified by studying the propagation of a hydrogram of any given shape. Use of this model, validated on a hydrogram of any given shape and presenting several peaks of different intensities, yields a satisfactory reproduction of the output hydrogram and is a distinct improvement on the classic Muskingum model

    Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens

    Get PDF
    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2)â©Ÿ0.3) in both traditional and village chickens at pairwise marker distances of ∌10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∌75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions

    Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    Get PDF
    <div><h3>Background</h3><p>Some species of the whitefly <em>Bemisia tabaci</em> complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce.</p> <h3>Methodology/Principal Findings</h3><p>We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of <em>B. tabaci</em> complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding.</p> <h3>Conclusions/Significance:</h3><p>The combined method of cDNA amplification, Illumina sequencing and <em>de novo</em> assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission.</p> </div

    Characteristics of Copper-based Oxygen Carriers Supported on Calcium Aluminates for Chemical-Looping Combustion with Oxygen Uncoupling (CLOU)

    Get PDF
    Eight different oxygen carriers (OC) containing CuO (60 wt %) and different mass ratios of CaO to Al2O3 as the support were synthesized by wet-mixing followed by calcination at 1000 °C. The method of synthesis used involved the formation of calcium aluminum hydrate phases and ensured homogeneous mixing of the Ca2+ and Al3+ ions in the support at the molecular level. The performance of the OCs for up to 100 cycles of reduction and oxidation was evaluated in both a thermogravimetric analyzer (TGA) and a fluidized bed reactor, covering a temperature range of 800 to 950 °C. In these cycling experiments, complete conversion of the OC, from CuO to Cu and vice versa, was always achieved for all OCs. The reactivity of the materials was so high that no deactivation could be observed in the TGA, owing to mass transfer limitations. It was found that OCs prepared with a mass ratio of CaO to Al2O3 in the support >0.55 agglomerated in the fluidized bed, resulting in an apparent deactivation over 25 cycles for all temperatures investigated. High ratios of mass of CaO to Al2O3 in the support resulted in CuO interacting with CaO, forming mixed oxides that have low melting temperatures, and this explains the tendency of these materials to agglomerate. This behavior was not observed when the mass ratio of CaO to Al2O3 in the support was ≀0.55 and such materials showed excellent cyclic stability operating under redox conditions at temperatures as high as 950 °C.The authors thank Mohammad Ismail and Matthew Dunstan for helping with the XRD analysis and Alex Casabuena-Rodriguez and for helping with the SEM. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC grant EP/I010912/1).This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acs.iecr.5b0117

    Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements

    Get PDF
    A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged

    The steel–concrete interface

    Get PDF
    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics at the SCI and reviewed available information regarding their properties as well as their occurrence in engineering structures and in the laboratory. Given the complexity of the SCI, we suggested a systematic approach to describe it in terms of local characteristics and their physical and chemical properties. It was found that the SCI exhibits significant spatial inhomogeneity along and around as well as perpendicular to the reinforcing steel. The SCI can differ strongly between different engineering structures and also between different members within a structure; particular differences are expected between structures built before and after the 1970/1980s. A single SCI representing all on-site conditions does not exist. Additionally, SCIs in common laboratory-made specimens exhibit significant differences compared to engineering structures. Thus, results from laboratory studies and from practical experience should be applied to engineering structures with caution. Finally, recommendations for further research are made

    Epidemiologia do carcinoma basocelular

    Full text link
    • 

    corecore