93 research outputs found
Effects of experimental disturbance on multi-taxa assemblages and traits: conservation implication in a forest-open landscape mosaic
Overcoming fragmentation and isolation requires innovative solutions if cohesive biodiversity networks are to be created in modernised landscapes. Within Europe much of the biodiversity interest is in semi-natural habitats that exist as isolated reserves. This thesis aimed to test the connectivity potential of open habitat for lowland heathland biodiversity within a mosaic forest landscape. A range of experimental management treatments were implemented covering a gradient of disturbance intensity intended to enhance connectivity through plantation forest for early-successional biodiversity. Both species composition and life history traits were investigated enabling a comprehensive interpretation of response across multiple species. Sampling programs identified over 87000 invertebrates, comprising 38188 spiders from 183 species, 41531 ants from 20 species and 7564 carabids from 93 species, and recorded 23241 observations of 222 vascular plant species. Initial investigations revealed forestry trackways contained a component of the regional heathland spider assemblage, but this was significantly degraded as adjacent forest matured. Experiments to augment heathland biodiversity in trackways resulted in contrasting responses between taxa. Specialist carabids and vascular plants (associated with heathland or early-successional habitats), increased in abundance and richness with high intensity disturbance. Spider assemblages were left depauperate and did not completely recover after two seasons; ants did not respond at any disturbance level. Trait-based analysis showed that the abundance of aerial dispersers increased and size decreased with disturbance intensity for carabids and plants. In contrast, spider body size increased with greater disturbance and aerial dispersal was not significant. For spiders, ephemeral stepping stones, in the form young restock coupes, support the majority of the heath assemblage, whereas open linear habitat in the form of trackways, suffer from edge effects and are dominated by generalist and woodland spiders. Network cohesion will benefit from intensive disturbance management and a combination of connectivity elements to incorporate contrasting dispersal abilities
Arthropod traits and assemblages differ between core patches, transient stepping-stones and landscape corridors
Context Restoring landscape connectivity can mitigate fragmentation and improve population resilience, but functional equivalence of contrasting elements is poorly understood. Evaluating biodiversity outcomes requires examining assemblage-responses across contrasting taxa. Objectives We compared arthropod species and trait composition between contrasting open-habitat network elements: core patches, corridors (allowing individual dispersal and population percolation), and transient stepping-stones (potentially enhancing metapopulation dynamics). Methods Carabids and spiders were sampled from core patches of grass-heath habitat (n = 24 locations across eight sites), corridors (trackways, n = 15) and recently-replanted clear-fells (transient patches, n = 19) set in a forest matrix impermeable to openhabitat arthropods. Species and trait (habitat association, diet, body size, dispersal ability) composition were compared by ordination and fourth corner analyses. Results Each network element supported distinct arthropod assemblages with differing functional trait composition. Core patches were dominated by specialist dry-open habitat species while generalist and woodland species contributed to assemblages in connectivity elements. Nevertheless, transient patches (and to a lesser degree, corridors) supported dry-open species characteristic of the focal grass-heath sites. Trait associations differed markedly among the three elements. Dispersal mechanisms and their correlates differed between taxa, but dry-open species in transient patches were characterised by traits favouring dispersal (large running hunter spiders and large, winged, herbivorous carabids), in contrast to wingless carabids in corridors. Conclusions Core patches, dispersal corridors and transient stepping-stones are not functionally interchangeable within this system. Semi-natural core patches supported a filtered subset of the regional fauna. Evidence for enhanced connectivity through percolation (corridors) or meta-population dynamics (stepping stones) differed between the two taxa
Leafcutter ants adjust foraging behaviours when exposed to noise disturbance
We investigate the impact of anthropogenic noise on the foraging efficiency of leafcutter ants (Acromyrmex octospinosus) in a controlled laboratory experiment. Anthropogenic noise is a widespread, pervasive and increasing environmental pollutant and its negative impacts on animal fitness and behaviour have been well documented. Much of this evidence has come from studies concerning vertebrate species with very little evidence for terrestrial invertebrates, especially social living invertebrates. We compare movement speed, forage fragment size, and colony activity levels of ants exposed to intermittent elevated noise and in ambient noise conditions. We use intermittent and temporally unpredictable bursts of white noise produced from a vibration speaker to create the elevated noise profile. Ant movement speed increased under elevated noise conditions when travelling to collect forage material and when returning to the colony nest. The size of individually measured foraged material was significantly reduced under elevated noise conditions. Colony activity, the number of ants moving along the forage route, was not affected by elevated noise and was consistent throughout the foraging events. Increased foraging speed and smaller forage fragments suggests that the ants had to make more foraging trips over an extended period, which is likely to affect energy expenditure and increases exposure to predators. This is likely to have significant fitness impacts for the colony over time
Species interactions modulate the response of saltmarsh plants to flooding
Background and aims The vegetation that grows on coastal wetlands is important for ecosystem functioning, a role mediated by plant traits. These traits can be affected by environmental stressors and by the competitive environment the plant experiences. The relative importance of these influences on different traits is poorly understood and, despite theoretical expectations for how factors may interact, empirical data are conflicting. Our aims are to determine the effect of flooding, species composition and their interaction on plant functional traits, and assess the role of biodiversity and species composition in driving community-level responses to flooding. Methods We conducted a factorial glasshouse experiment assessing the effects of species composition (all combinations of three saltmarsh species, Aster tripolium, Plantagomaritima and Triglochin maritima) and flooding (immersion of roots) on a suite of functional traits. We also related biomass in mixed species pots to that expected from monocultures to assess how species interactions affect community-level biomass. Key results Species composition frequently interacted with flooding to influence functional traits and community level properties. However, there was also considerable intraspecific variability in traits within each treatment. Generally, effects of flooding were more pronounced for belowground than aboveground biomass, while composition affected aboveground biomass more than belowground biomass. We found both negative and positive interactions between species (indicated by differences in above and belowground biomass from expectations under monoculture), meaning that composition was an important determinate of community function. Conclusions While the effect of flooding alone on traits was relatively weak, it interacted with species composition to modify the response of both individual plants and communities. Our results suggest that responses to increased flooding will be complex and depend on neighbourhood species interactions. Furthermore, intraspecific trait variability is a potential resource that may dampen the effects of changes in flooding regime
Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding
To manage and conserve biodiversity, one must know what is being lost, where, and why, as well as which remedies are likely to be most effective. Metabarcoding technology can characterise the species compositions of mass samples of eukaryotes or of environmental DNA. Here, we validate metabarcoding by testing it against three high‐quality standard data sets that were collected in Malaysia (tropical), China (subtropical) and the United Kingdom (temperate) and that comprised 55,813 arthropod and bird specimens identified to species level with the expenditure of 2,505 person‐hours of taxonomic expertise. The metabarcode and standard data sets exhibit statistically correlated alpha‐ and beta‐diversities, and the two data sets produce similar policy conclusions for two conservation applications: restoration ecology and systematic conservation planning. Compared with standard biodiversity data sets, metabarcoded samples are taxonomically more comprehensive, many times quicker to produce, less reliant on taxonomic expertise and auditable by third parties, which is essential for dispute resolution.We thank Yang Yahan, Alice Wang, Vincent Moulton, David Warton and Wadud Miah for support and advice and to Ding Zhaoli for sequencing. LA, YT, AN and RK were supported by the Queensland‐Chinese Academy of Sciences (QCAS) Biotechnology Fund (GJHZ1130) and Griffith University. DPE was supported by a STEP fellowship at Princeton University. SP was supported by the Natural Environment Research Council, Forestry Commission, Norfolk Biodiversity Information Service and Suffolk Biodiversity Partnership. Additional support for DPE, PW, FAE, THL and WHH was provided by a grant from the High Meadows Foundation to DSW. YQJ, XYW and DWY were supported by Yunnan Province (20080A001), the Chinese Academy of Sciences (0902281081, KSCX2‐YW‐Z‐1027), the National Natural Science Foundation of China (31170498), the Ministry of Science and Technology of China (2012FY110800), the University of East Anglia, and the State Key Laboratory of Genetic Resources and Evolution at the Kunming Institute of Zoology
Commercial spruce plantations support a limited. canopy fauna: Evidence from a multi taxa comparison of native and plantation forests
Globally, the total area of plantation forest is increasing as deforestation and fragmentation of native forest continues. In some countries commercial plantations make up more than half of the total forested land. Internationally, there is growing emphasis on forestry policy for plantations to deliver biodiversity and ecosystem services. In Ireland, native forest now comprises just 1% of total land cover while non-native spruce forest makes up 60% of the plantation estate and approximately 6% of the total land cover. The majority of plantation invertebrate biodiversity assessments focus on ground-dwelling species and consequently a good understanding exists for these guilds, especially ground-active spiders and beetles. Using a technique of insecticide fogging, we examine the less well understood component of forest systems, the canopy fauna (Coleoptera, Araneae, Diptera and Hemiptera), in Irish spruce plantations (Sitka and Norway) and compare the assemblage composition, richness and abundance to that of remnant native forest (ash and oak). In addition, we examine the potential for accumulation of forest species in second rotation spruce plantations and identify indicator species for each forest type. From 30 sampled canopies, we recorded 1155 beetles and 1340 spiders from 144 species and over 142 000 Diptera and Hemiptera from 71 families. For all taxa, canopy assemblages of native forests were significantly different from closed-canopy plantation forests. No indicators for plantation forest were identified; those identified for native forest included species from multiple feeding guilds. Plantations supported approximately half the number of beetle species and half the number of Diptera and Hemiptera families recorded in native forests. Although assemblages in Norway spruce plantations were very different to those of native forest, they had consistently higher richness than Sitka spruce plantations. No differences in richness or abundance were found between first rotation and second rotation Sitka spruce plantations. Compared to other forest types, Sitka spruce plantations contained far greater total abundance of invertebrates, due to vast numbers of aphids and midges. Under current management, Sitka spruce plantations provide limited benefit to the canopy fauna typical of native forests in either first or second rotations. The large aphid populations may provide abundant food for insectivores but may also lead to reduced crop production through defoliation. Progressive forestry management should attempt to diversify the plantation canopy fauna, which may also increase productivity and resilience to pest species
Operons
Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function
Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes
BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events
- …