38 research outputs found

    New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection

    Get PDF
    Through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface, SSRL researchers have screened over 200 000 biological crystals for diffraction quality in an automated fashion. Three quarters of SSRL researchers are using these data-collection tools from remote locations

    Remote access to crystallography beamlines at SSRL: novel tools for training, education and collaboration

    Get PDF
    The ultimate goal of synchrotron data collection is to obtain the best possible data from the best available crystals, and the combination of automation and remote access at Stanford Synchrotron Radiation Lightsource (SSRL) has revolutionized the way in which scientists achieve this goal. This has also seen a change in the way novice crystallographers are trained in the use of the beamlines, and a wide range of remote tools and hands-on workshops are now offered by SSRL to facilitate the education of the next generation of protein crystallographers

    Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    Get PDF
    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships

    A dual role for the N-terminal domain of the IL-3 receptor in cell signalling

    Get PDF
    The interleukin-3 (IL-3) receptor is a cell-surface heterodimer that links the haemopoietic, vascular and immune systems and is overexpressed in acute and chronic myeloid leukaemia progenitor cells. It belongs to the type I cytokine receptor family in which the α-subunits consist of two fibronectin III-like domains that bind cytokine, and a third, evolutionarily unrelated and topologically conserved, N-terminal domain (NTD) with unknown function. Here we show by crystallography that, while the NTD of IL3Rα is highly mobile in the presence of IL-3, it becomes surprisingly rigid in the presence of IL-3 K116W. Mutagenesis, biochemical and functional studies show that the NTD of IL3Rα regulates IL-3 binding and signalling and reveal an unexpected role in preventing spontaneous receptor dimerisation. Our work identifies a dual role for the NTD in this cytokine receptor family, protecting against inappropriate signalling and dynamically regulating cytokine receptor binding and function.Sophie E. Broughton, Timothy R. Hercus, Tracy L. Nero, Winnie L. Kan ... Timothy P. Hughes, Angel F. Lopez ... et al

    Evaluation of FluidQuip Fiber Stream Dried Distillers Grains plus Solubles on Performance and Carcass Characteristics in Finishing Diets

    Get PDF
    A finishing study was conducted to evaluate the effect of feeding dried distillers grains plus solubles (DDGS) from the MSC- fi ber stream of the FluidQuip post- fermentation fiber separation process compared to conventional DDGS at two inclusion levels (20% and 40% of diet dry matter). Inclusion of DDGS from MSC or conventional processing methods resulted in increased dry matter intake and daily gain. Despite increased gain, feed conversion tended to be worse for MSC DDGS. Daily gain tended to respond quadratically with increasing inclusion of conventional DDGS with gain increasing from 0 to 20% inclusion, but decreasing from 20 to 40%. Inclusion of conventional DDGS resulted in a quadratic response for feed conversion with improved conversion from 0 to 20% inclusion and poorer conversion from 20 to 40%. Feeding MSC DGS resulted in increased gain but worse feed conversion compared to conventional DDGS when included at both 20% and 40% inclusion

    Data from: Environmental correlates of the Late Quaternary regional extinctions of large and small Palaearctic mammals

    Get PDF
    Most studies of mammal extinctions during the Pleistocene–Holocene transition explore the relative effects of climate change vs. human impacts on these extinctions, but the relative importance of the different environmental factors involved remains poorly understood. Moreover, these studies are strongly biased towards megafauna, which may have been more influenced by human hunting than species of small body size. We examined the potential environmental causes of Pleistocene–Holocene mammal extinctions by linking regional environmental characteristics with the regional extinction rates of large and small mammals in 14 Palaearctic regions. We found that regional extinction rates were larger for megafauna, but extinction patterns across regions were similar for both size groups, emphasizing the importance of environmental change as an extinction factor as opposed to hunting. Still, the bias towards megafauna extinctions was larger in Southern Europe and smaller in central Eurasia. The loss of suitable habitats, low macroclimatic heterogeneity within regions and an increase in precipitation were identified as the strongest predictors of regional extinction rates. Suitable habitats for many species of the Last Glacial fauna were grassland and desert, but not tundra or forest. The low-extinction regions identified in central Eurasia are characterized by the continuous presence of grasslands and deserts until the present. In contrast, forest expansion associated with an increase in precipitation and temperature was likely the main factor causing habitat loss in the high-extinction regions. The shift of grassland into tundra also contributed to the loss of suitable habitats in northern Eurasia. Habitat loss was more strongly related to the extinctions of megafauna than of small mammals. Ungulate species with low tolerance to deep snow were more likely to go regionally extinct. Thus, the increase in precipitation at the Pleistocene–Holocene transition may have also directly contributed to the extinctions by creating deep snow cover which decreases forage availability in winter

    Evaluation of FluidQuip Fiber Stream Dried Distillers Grains plus Solubles on Performance and Carcass Characteristics in Finishing Diets

    No full text
    A finishing study was conducted to evaluate the effect of feeding dried distillers grains plus solubles (DDGS) from the MSC- fi ber stream of the FluidQuip post- fermentation fiber separation process compared to conventional DDGS at two inclusion levels (20% and 40% of diet dry matter). Inclusion of DDGS from MSC or conventional processing methods resulted in increased dry matter intake and daily gain. Despite increased gain, feed conversion tended to be worse for MSC DDGS. Daily gain tended to respond quadratically with increasing inclusion of conventional DDGS with gain increasing from 0 to 20% inclusion, but decreasing from 20 to 40%. Inclusion of conventional DDGS resulted in a quadratic response for feed conversion with improved conversion from 0 to 20% inclusion and poorer conversion from 20 to 40%. Feeding MSC DGS resulted in increased gain but worse feed conversion compared to conventional DDGS when included at both 20% and 40% inclusion
    corecore