216 research outputs found

    The technologies of isolation: apocalypse and self in Kurosawa Kiyoshi's Kairo

    Get PDF
    In this investigation of the Japanese film Kairo, I contemplate how the horrors present in the film relate to the issue of self, by examining a number of interlocking motifs. These include thematic foci on disease and technology which are more intimately and inwardly focused that the film's conclusion first appears to suggest. The true horror here, I argue, is ontological: centred on the self and its divorcing from the exterior world, especially founded in an increased use of and reliance on communicative technologies. I contend that these concerns are manifested in Kairo by presenting the spread of technology as disease-like, infecting the city and the individuals who are isolated and imprisoned by their urban environment. Finally, I investigate the meanings of the apocalypse, expounding how it may be read as hopeful for the future rather than indicative of failure or doom

    A Large Sample of BL Lacs from SDSS and FIRST

    Full text link
    We present a large sample of 501 radio-selected BL Lac candidates from the combination of the Sloan Digital Sky Survey (SDSS) Data Release 5 optical spectroscopy and from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio survey; this is one of the largest BL Lac samples yet assembled, and each object emerges with homogeneous data coverage. Each candidate is detected in the radio from FIRST and confirmed in SDSS optical spectroscopy to have: (1) no emission feature with measured rest equivalent width larger than 5 Angstroms; and (2) no measured Ca II H/K depression larger than 40%. We subdivide our sample into 426 higher confidence candidates and 75 lower confidence candidates. We argue that contamination from other classes of objects that formally pass our selection criteria is small, and we identify a few very rare radio AGN with unusual spectra that are probably related to broad absorption line quasars. About one-fifth of our sample were known BL Lacs prior to the SDSS. A preliminary analysis of the sample generally supports the standard beaming paradigm. While we recover sizable numbers of low-energy and intermediate-energy cutoff BL Lacs (LBLs and IBLs, respectively), there are indications of a potential bias toward recovering high-energy cutoff BL Lacs (HBLs) from SDSS spectroscopy. Such a large sample may eventually provide new constraints on BL Lac unification models and their potentially peculiar cosmic evolution; in particular, our sample contains a significant number of higher redshift objects, a sub-population for which the standard paradigm has yet to be rigorously constrained.Comment: 16 pages, 13 figures, 6 tables. Accepted for Publication in the Astronomical Journa

    Stability of Satellite Planes in M31 II: Effects of the Dark Subhalo Population

    Full text link
    The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhalos results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark halos. The role of total dark matter mass fraction held in subhalos in dispersing a plane of galaxies present non trivial effects on plane longevity as well. But any misalignments of plane inclines to major axes of flattened dark matter halos lead to their lifetimes being reduced to < 3 Gyrs. Distributing > 40% of total dark mass in subhalos in the overall dark matter distribution results in a plane of satellite galaxies that is prone to change through the 5 Gyr integration time period.Comment: 11 pages, 9 figures, accepted to MNRAS September 22 201

    Tissue-resident, extravascular Ly6c- monocytes are critical for inflammation in the synovium

    Get PDF
    Monocytes are abundant immune cells that infiltrate inflamed organs. However, the majority of monocyte studies focus on circulating cells, rather than those in tissue. Here, we identify and characterize an intravascular synovial monocyte population resembling circulating non-classical monocytes and an extravascular tissue-resident monocyte-lineage cell (TR-MC) population distinct in surface marker and transcriptional profile from circulating monocytes, dendritic cells, and tissue macrophages that are conserved in rheumatoid arthritis (RA) patients. TR-MCs are independent of NR4A1 and CCR2, long lived, and embryonically derived. TR-MCs undergo increased proliferation and reverse diapedesis dependent on LFA1 in response to arthrogenic stimuli and are required for the development of RA-like disease. Moreover, pathways that are activated in TR-MCs at the peak of arthritis overlap with those that are downregulated in LFA1-/- TR-MCs. These findings show a facet of mononuclear cell biology that could be imperative to understanding tissue-resident myeloid cell function in RA.</p

    Reading related white matter structures in adolescents are influenced more by dysregulation of emotion than behavior

    Get PDF
    Mood disorders and behavioral are broad psychiatric diagnostic categories that have different symptoms and neurobiological mechanisms, but share some neurocognitive similarities, one of which is an elevated risk for reading deficit. Our aim was to determine the influence of mood versus behavioral dysregulation on reading ability and neural correlates supporting these skills in youth, using diffusion tensor imaging in 11- to 17-year-old children and youths with mood disorders or behavioral disorders and age-matched healthy controls. The three groups differed only in phonological processing and passage comprehension. Youth with mood disorders scored higher on the phonological test but had lower comprehension scores than children with behavioral disorders and controls; control participants scored the highest. Correlations between fractional anisotropy and phonological processing in the left Arcuate Fasciculus showed a significant difference between groups and were strongest in behavioral disorders, intermediate in mood disorders, and lowest in controls. Correlations between these measures in the left Inferior Longitudinal Fasciculus were significantly greater than in controls for mood but not for behavioral disorders. Youth with mood disorders share a deficit in the executive-limbic pathway (Arcuate Fasciculus) with behavioral-disordered youth, suggesting reduced capacity for engaging frontal regions for phonological processing or passage comprehension tasks and increased reliance on the ventral tract (e.g., the Inferior Longitudinal Fasciculus). The low passage comprehension scores in mood disorder may result from engaging the left hemisphere. Neural pathways for reading differ mainly in executive-limbic circuitry. This new insight may aid clinicians in providing appropriate intervention for each disorder

    Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Get PDF
    High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points

    Sudden death in epilepsy: There is room for intracranial pressure

    Get PDF
    Introduction: Sudden unexpected death in patients with epilepsy (SUDEP) remains a poorly understood entity, and it is unclear whether the same pathomechanisms underlie all sudden deaths occurring in patients with epilepsy. One aspect not included in current models of SUDEP is the role of increased intracranial pressure (ICP) which can be observed immediately upon seizure activity in neurosurgical practice. Methods: We conducted a systematic review of the occurrence of edema in patients with epilepsy reported to have died of sudden death who underwent brain autopsy or postmortem brain imaging and discuss how increased ICP may contribute to clinical features of SUDEP. Results: 19 eligible studies comprising a total of 623 patients were identified. Edema—mostly mild or moderate—was reported in 17% of cases and 74% of studies. 1% (n = 6) of the overall cases were clearly identified as having Dravet syndrome or an SCN1A mutation. In these patients, edema was found in 4 (67%) of cases. Conclusion: Edema is regularly found in patients with epilepsy classified to have died from SUDEP. We argue that seizures preceding SUDEP may in certain cases elicit acute edema which may represent an additional contributing factor in the cascade of events leading to sudden death of patients with epilepsy. Furthermore, we hypothesize that mild edema may especially progress to severe edema in patients with sodium channel mutations which may represent an important mechanism to investigate in the context of understanding the significantly elevated risk of SUDEP in patients with SCN1A mutations

    A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis

    Get PDF
    The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2−/− mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2−/− mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2−/− mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe
    corecore