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SUMMARY

Drosophila melanogaster has a rich repertoire of
innate and learned behaviors. Its 100,000-neuron
brain is a large but tractable target for comprehen-
sive neural circuit mapping. Only electron micro-
scopy (EM) enables complete, unbiased mapping
of synaptic connectivity; however, the fly brain is
too large for conventional EM. We developed a
custom high-throughput EM platform and imaged
the entire brain of an adult female fly at synaptic res-
olution. To validate the dataset, we traced brain-
spanning circuitry involving the mushroom body
(MB), which has been extensively studied for its
role in learning. All inputs to Kenyon cells (KCs), the
intrinsic neurons of the MB, were mapped, revealing
a previously unknown cell type, postsynaptic part-
ners of KC dendrites, and unexpected clustering of
olfactory projection neurons. These reconstructions
show that this freely available EM volume supports
mapping of brain-spanning circuits, which will signif-
icantly accelerate Drosophila neuroscience.

INTRODUCTION

How brain circuits allow animals to implement complex behavior

remains a central mystery of neurobiology. Where available,

neuronal ‘‘wiring diagrams’’ or ‘‘connectomes’’ (Lichtman and

Sanes, 2008)—maps of the synaptic connectivity between the

neurons in a circuit—have proved extremely useful for under-

standing circuit function (Ding et al., 2016; Jarrell et al., 2012;

Kasthuri et al., 2015; Ohyama et al., 2015; Takemura et al.,

2017b; Wanner et al., 2016). However, many neuronal circuits
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are brain-spanning, and access to whole-brain connectomes

has been limited to a few small organisms, such as the nematode

C. elegans, the larva of the fruit (or vinegar) fly, Drosophila mela-

nogaster, and the tadpole larva of the tunicate Ciona intestinalis

(Ohyama et al., 2015; Ryan et al., 2016; White et al., 1986).

The adult fruit fly has emerged as a key genetic model system

for interrogating the neuronal substrates of sophisticated behav-

iors, such as place learning, flight control, courtship, grooming,

and memory-driven action selection (Dickinson and Muijres,

2016; Hampel et al., 2015; Ofstad et al., 2011; Owald and Wad-

dell, 2015; Pavlou and Goodwin, 2013). Given the morphological

and physiological stereotypy and genetic accessibility of

neuronal cell types in the fly brain, connectomes of circuits un-

derlying these behaviors should translate well across individuals

and significantly accelerate the dissection of the neuronal

basis for behavior (Gruntman et al., 2018; Jovanic et al., 2016;

Ohyama et al., 2015; Takemura et al., 2017a, 2017b). However,

at �8 3 107 mm3 and �100,000 neurons (Simpson, 2009), the

brain of an adult fly is two orders of magnitude larger than that

of the fruit fly larva, the next-largest brain imaged at synaptic

resolution (Ohyama et al., 2015). This combination of scale and

resolution has heretofore been unattainable by volume electron

microscopy (EM), the only method capable of simultaneously

resolving all neuronal branches and synapses in a given volume

of brain tissue (Helmstaedter et al., 2008). Therefore, we built

new hardware and software for high-speed acquisition and pro-

cessing of serial section transmission EM (TEM) images and

used this infrastructure to image a whole-fly brain at synaptic

resolution (Figure 1).

We took multiple approaches to validate our whole-brain vol-

ume for tracing synaptic connectivity of brain-spanning

neuronal circuits. Our efforts focused on the mushroom body

(MB), which has been intensively studied for its role in associa-

tive memory formation and recall (Guven-Ozkan and Davis,

2014; Keene and Waddell, 2007). Olfactory projection neurons
by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Target Volume and EM Acquisition Infrastructure

(A) Oblique view of a surface model of the Drosophila brain (gray mesh) with specific neuropil compartments highlighted: AL (orange), MB (pink), and LH (green).

(B) Schematic of olfactory pathway. Approximately 150 PNs, divided into�50 subtypes based on their anatomically defined glomeruli of origin in the AL, project to

the MB calyx and LH (Grabe et al., 2016; Masse et al., 2009). Lateral horn is thought to mediate innate olfactory behaviors, whereas the MB is involved in learned

behaviors (Keene andWaddell, 2007). In MB calyx, PN collaterals terminate in boutons and synapse on KCs (Yasuyama et al., 2002). Most PN types project to the

MB calyx via the mALT, but several travel in secondary tracts (data not shown), and a few bypass calyx and project only to LH (Frank et al., 2015; Stocker et al.,

1990; Tanaka et al., 2012).

(C) Workflow for the generation of the whole-brain dataset. Blocks of brain tissue are incubated in heavy metals to label cell membranes, embedded in a resin

polymer, and screened with X-ray tomography. Blocks were then serially sectioned with a diamond knife (for an introduction to serial sectioning techniques, see

Harris et al., 2006). Groups of three serial sections are placed on metal slot grids for imaging in one of the two custom high-throughput TEM systems (TEMCA2 or

ATPS). The imaged sections were assembled into an aligned volume with the custom software pipeline described here. Reconstruction and analyses of neural

circuits in the volume were conducted with the CATMAID tracing environment (Saalfeld et al., 2009).

D, dorsal; V, ventral; A, anterior; P, posterior; M, medial; L, lateral; LH, lateral horn; mALT, medial antennal lobe tract. See also Figures S1, S2, and S3 and

Videos S1, S2, S3, and S4.
(PNs) provide the main sensory input to the MB; their connec-

tions with the MB intrinsic neurons, Kenyon cells (KCs), form a

crucial stage of a fan-out fan-in network analogous to brain

structures including the mammalian cerebellum (Farris, 2011;

Stevens, 2015). Furthermore the logic of PN to KC connectivity

ratios has been the subject of detailed experimental and

theoretical analysis as a model for the construction of high

dimensional sensory representations (e.g., Caron et al., 2013;

Litwin-Kumar et al., 2017). KCs and PNs are brain spanning,

morphologically stereotyped, and anatomically extremely well

described at the light level (Aso et al., 2014; Jefferis et al.,

2007; Tanaka et al., 2012), making them well suited for vali-

dating the accuracy of neural reconstructions in the volume.

We have developed software tools to enable co-visualization,

quantitative analysis, and rapid cell type identification by merg-

ing EM reconstructions with existing large-scale light micro-

scopy (LM) databases of neuronal morphology (Chiang et al.,

2011; Costa et al., 2016; Milyaev et al., 2012).
Independent tracingofKenyoncell dendrites,whichhavesome

of the finest neurites in the fly brain (Yasuyama et al., 2002), pro-

videda sensitive test of theconsistencyof neural reconstructions.

Retrograde tracing from KC dendrites provided a complete

enumeration of olfactory PN input to the MB and yielded an

improvedmapof local circuitry in the calyx, the initial site for sam-

pling and processing of sensory information in the MB. This re-

vealed principles of coordinated organization that were invisible

in previous work using light level data assembled from many

different brains; for example we found a high degree of clustering

of PN inputs, which may generate biases in PN-to-KC connectiv-

ity and therefore shape how olfactory PN input to the MB is

sampled. Although the MB has been intensively studied, we

also discovered a previously unknown, brain-spanning neuron

that provides input to KCs and likely relays non-olfactory, multi-

modal information to thecalyx. Finally,we show that KCdendrites

make output synapses onto a small subset of available cell types,

defining a specific local recurrent microcircuit in the calyx.
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In conclusion, we describe the largest synaptic-resolution,

whole-brain EM dataset obtained to date. We show that it en-

ables efficient mapping and identification of both known

and unknown neurons in adult Drosophila, a key model sys-

tem for circuit neuroscience and, crucially, that it enables reli-

able and efficient determination of synaptic connectivity. We

have made these data and supporting software freely avail-

able for download and immediate use by the scientific

community.

RESULTS

New Tools for Volume EM Data Acquisition
To meet the challenge of acquiring a whole fly brain, we used a

variation of classical serial section TEM (ssTEM), in which im-

ages are acquired at high-speed with a TEM camera array

(TEMCA) (Bock et al., 2011). Although sample handling for

TEM is challenging (Figures S3A–S3D), in comparison to scan-

ning EM-based methods, the intrinsically parallel nature of the

electron optical image formed in TEMmakes it relatively straight-

forward to achieve high-quality EM images at high-speed (re-

viewed in Briggman and Bock, 2012).

We built two second-generation TEMCA (TEMCA2) systems

(Figures S2A and S3E), using high-speed sCMOS cameras

and made a custom piezo-driven Fast Stage (Figures S2B,

S3F, and S3G) (Price and Bock, 2016a). Image mosaics were

needed because at typical magnification, each camera in the

array had an �8 mm field of view (FOV), whereas each whole-

brain thin section was �750-mm wide 3 �350-mm tall (Fig-

ure 1A). At 4 nm/pixel, this resulted in a large (�187,500 3

87,500 pixel, �16 GB) stitched image mosaic for each section.

Each FOV was typically acquired using four 35 ms frames,

versus �1 s in conventional TEM imaging systems. The Fast

Stage moved one FOV in 30–50 ms (including settle time; Fig-

ures S2C and S2D; Video S1), versus the �4 s in conventional

systems. The combination of high-speed imaging acquisition

and sample translation allowed a single whole-brain thin sec-

tion to be imaged in less than 7 min, for a per-section

throughput of �50 MPix/s (�5 times faster than the first-gener-

ation TEMCA (Bock et al., 2011), and �40x faster than conven-

tional TEM systems (Takemura et al., 2013). Since each sample

grid (Figure S3H) typically supported three whole-brain sections

(Figure 1C), and it takes �10 min to exchange grids and define

target regions of interest (ROIs), per-grid throughput, which in-

cludes sample exchange and ROI definition by microscopists,

was �27 MPix/s.

To decrease overhead and to allow unattended multi-day im-

aging, we built a robotic Automated Transport and Positioning

System (ATPS) (Figures S2E, S2F, and S3I–S3N) (Price and

Bock, 2015, 2016a, 2016b). It enabled autonomous sample ex-

change in �5 min and autonomous imaging of TEM grids using

predefined ROIs (Figure 1C; Videos S2 and S3). We mounted

the ATPS on a single-camera TEM, resulting in per-section

throughput �1/4 that of a TEMCA2 system. Nonetheless, the

ATPS had greatly improved reliability, capacity, and throughput

compared to previous TEM-based platforms for automated

sample exchange and imaging (Lefman et al., 2007; Potter

et al., 2004).
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EM Image Acquisition and Volume Reconstruction of a
Complete Adult Fly Brain
The above-described infrastructure provided an order-of-

magnitude increase in EM imaging capacity, sufficient to image

the complete brain of a female adult fruit fly at synaptic resolution

in a reasonable amount of calendar time. To span the depth

(�250 mm) of the entire fly brain, 7,062 serial �40-nm thin sec-

tions were cut from a sample optimized for both high membrane

contrast and high-quality ultrastructure (Figures 1A, 1C, and

S3A). In total, 7,050 (99.8%) sections were successfully imaged,

resulting in a �106 TB dataset comprising �21 million camera

images.

The quality of acquired image data was high (Figures 2, S4,

and S5; Video S4). In general, image quality improves with in-

creases to both image resolution and signal-to-noise ratio

(SNR). Whether a given EM volume has sufficient resolution to

reliably detect synapses and trace fine neuronal processes can

only be evaluated empirically. We found that the SNR of images

in the whole-brain volume equals or exceeds that of other pub-

licly available datasets (Figures 2G and S4). If greater resolution

is needed in the future, targeted ROIs can be reimaged at higher

magnification (Figures S5A–S5C).

A custom software pipeline was developed to assemble the

millions of individual camera images into a coherent volume,

a process known as ‘‘volume reconstruction.’’ A distributed

compute cluster was used to stitch images from each section

into a mosaic and then to register mosaics across all sections

into an aligned volume (Figures 1C and 2). Artifacts and distor-

tions introduced in serial sectioning, pickup, staining, and imag-

ing of samples (Bock et al., 2011; Saalfeld et al., 2012), were

either accommodated or corrected, resulting in a high-quality

volume reconstruction of the whole brain (Figures 2 and S5;

Video S4). Overall,�3%of camera images could not be incorpo-

rated, due to data loss during sample preparation or imaging,

and �0.5% had poor intensity correction due to folds or EM-

dense precipitates (Figures S5D, S5E, and S5K). Fewer sections

were lost than in the complete Drosophila larval central nervous

system volume, a dataset that has supported multiple significant

circuit mapping efforts (Jovanic et al., 2016; Ohyama et al., 2015;

Schlegel et al., 2016; Schneider-Mizell et al., 2016).

Independent Tracing of Fine Dendrites Shows
Reproducibility of Reconstruction
Three teams independently reconstructed the dendritic arbor

and proximal axon of a KC to completion (STAR Methods).

This task was representative of challenging, fine-scale recon-

struction targets, since KC dendritic claws, which ensheath PN

boutons in a characteristic structure called the microglomerulus,

are known to have some of the finest neurites (�40 nm) in the fly

brain (Yasuyama et al., 2002) (Figure S1A). Our tracing method

extended the efficient ‘‘iterative’’ approach of Schneider-Mizell

et al. (2016). Every neuron was initially traced and then proofread

by a different team member. The dendrite claw morphologies

and synaptic connections were highly consistent between the

three independent reconstructions (Figure S6), and were qualita-

tively similar to previous reconstructions of KC dendrites in the

MB calyx (Butcher et al., 2012; Yasuyama et al., 2002). In the

fly brain, a useful dichotomy can be drawn between larger,



Figure 2. Reconstructed Image Volume
(A–F) Renderings of brain-spanning EM in the sectioning plane (x-y axes) at successive zoom levels. All panels rendered using the ELM viewer (STAR Methods),

which averages several adjacent sections to improve contrast at low magnifications. Red dotted lines in left column indicate orthogonal (y-z axes) section plane

through the whole-brain volume, rendered in right column.

(G) Image signal-to-noise ratio (SNR) versus per-section acquisition rates for the current dataset (TEMCA2) and publicly available volume EM datasets acquired

via comparable techniques: FIB-scanning EM (Takemura et al., 2015), SBEM (Briggman et al., 2011), ATUM-scanning EM (Kasthuri et al., 2015), ssTEM

(Takemura et al., 2013), and TEMCA (Bock et al., 2011). Error bars indicate SD.

(H–K) Serial thin sections succeeding the one in (F). Fine processes can be followed across serial sections and section-to-section image registration is accurate

enough to provide a consistent FOV.

Axis labels are the same as those used in Figure 1. Scale bars, 200 (A), 100 (B), 25 (C), 10 (D), 2 (E), and 0.4 mm (F and H–K).

See also Figures S4, S5, and S6.
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microtubule-containing neurites, termed ‘‘backbones,’’ and fine,

microtubule-free neurites that extend over short distances,

termed ‘‘twigs’’ (Schneider-Mizell et al., 2016). In the indepen-

dently reconstructed KC, backbones contained no errors, and

the few discrepancies in twigs were due only to errors of omis-

sion, not commission. Our tracing approach (STAR Methods) is

biased to produce this category of error, which has been shown

to have minimal impact on network connectivity maps in fly

(Schneider-Mizell et al., 2016). The error rate was 60.8 mm/error

(454 mm total cable length; 37.9 mm/error in twigs alone; 287 mm

cable length). This rate is comparable to that reported for

Drosophila larva (27.2 mm/error, across 6 neurons totaling

2,666 mm in cable length; 16.2 mm/error in twigs alone,

1,539 mm cable length), and in mouse retina (83.4 mm/error

across 1 neuron totaling 600 mm cable length; Helmstaedter

et al., 2011; Schneider-Mizell et al., 2016, respectively). Thus,

the independent KC reconstructions demonstrate that the EM

data support accurate tracing of challenging, fine-scale neuronal

morphology and connectivity.

A Complete Survey of KC Inputs Reveals Tight
Clustering of Homotypic PN Arbors
To validate that brain-spanning neuronal connectivity can be

retrogradely reconstructed, the neurons providing input to all

KC claw microglomeruli in the MB calyx on the right side of the

brain were sufficiently traced to identify cell type. The mean

reconstruction rate for all identified PNs (including tracing and

proofreading of skeletons and synapses) was 120.1 mm/hr

(11.2 hr per cell), and 70.1 mm/hr (11.1 hr per cell) for 15 KCs.

These rates compare favorably to the �73 mm/h for proofread

skeletons (including synapses) reported by Schneider-Mizell

et al. (2016) and are comparable to 169.5 mm/hr (excluding syn-

apses) in mammalian retina (Helmstaedter et al., 2011).

As expected (Caron et al., 2013; Yagi et al., 2016), most KC

inputs turned out to be olfactory PNs, which are divided into

genetically identified subtypes. Each PN subtype has a ste-

reotyped and well-described morphology that spans the fly

brain, and which is reproducible across individuals with a pre-

cision of �5 mm (Costa et al., 2016; Jefferis et al., 2007; Lin

et al., 2007), allowing for quantitative assessment of the EM-

based reconstructions. Morphological reconstructions of

LM-imaged PNs from most subtypes are available in online

databases, and have been aligned to a small number of LM-

imaged template brains (Chiang et al., 2011; Manton et al.,

2014; Milyaev et al., 2012). Alignment of an LM-imaged tem-

plate brain (Aso et al., 2014) to the EM volume (STAR

Methods) allowed LM-imaged neurons from a volume previ-

ously aligned to the template brain to be overlaid on the EM

dataset (Figures 3A–3D).

Quantitative comparisons of EM- and LM-reconstructed PNs

were made using NBLAST (Costa et al., 2016), which measures

similarity between neuronal arbors. Similarity scores between

EM- and LM-reconstructed PNs of the same subtype were

high. In nearly all cases, the top NBLAST hit agreed with expert

identification of PN subtype (Table S1). EM-to-LM similarity

scores were comparable to LM-to-LM scores. For example,

the six VM2 PNs in an LM morphological database (FlyCircuit)

(Chiang et al., 2011), when compared with one another, resulted
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in NBLAST scores of 0.64–0.71 (scale of �1 to 1, where 1 indi-

cates identical neuron shape and position), and the EM-recon-

structed VM2 PN returned an NBLAST score of 0.64 when

compared to the same PNs. Qualitative assessment of similarity

agreed with the quantitative scoring (Figures 3E–3G). Since the

LM-imaged template brains have also been aligned to one

another (Manton et al., 2014), this tool chain can be used to

quantitatively compare any aligned LM- and EM-reconstructed

neurons.

Of the 578 boutons providing input to KC claws, 497 arose

from olfactory PNs (86%, from 114 PNs). The PN dendrites in

the antennal lobe (AL) permitted identification of all 50 known

olfactory glomeruli (Grabe et al., 2015) (Figures 4A–4C), although

two could not be disambiguated (VC5 and VC3l; STARMethods).

All classified PNs are included in a downloadable tracing envi-

ronment for use in future efforts mapping olfactory circuits in

the fly brain (Key Resources Table; STAR Methods). Seventeen

boutons (3%) arose from a previously unknown neuron that we

named ‘‘MB-CP2’’ (‘‘Mushroom Body Calyx Pedunculus #2,’’

per the naming convention of Tanaka et al. (2008) and further

describe below. The remaining 11% of boutons come from other

unidentified (presumably non-olfactory) PN types and other cell

types from outside the AL. Consistent with previous LM data,

the arbors of specific PN subtypes formed concentric clusters

in MB calyx (Figure 4C; compare to Figure 4 in Tanaka et al.,

2004). Unsupervised clustering based on NBLAST scores

grouped homotypic PNs (Figure 4D). The number of PNs arising

from each glomerulus (Figure 4E) was consistent with recent LM

data (Grabe et al., 2016).

Previously, LM data pooled across multiple animals showed

that homotypic PN collaterals fasciculate tightly in lateral horn,

but only loosely (or not at all) in MB calyx (Jefferis et al., 2007).

In contrast, our reconstructions in an individual brain showed

that in MB calyx, homotypic PNs often cluster tightly (Figures

5 and S7). The PN cluster at the center of the concentrically ar-

ranged arbors shown in Figure 4C was also tighter in the EM

data than in LM data pooled across multiple animals (Figure 5A,

bottom row). Quantification of the average distance between

homotypic PNs revealed that intra-animal arbors are signifi-

cantly more clustered than arbors from multi-animal LM data

(Student’s t test, p < 1.3 3 10�9) (Figures 5B and 5C). A similar

result was obtained based on NBLAST score differences (Stu-

dent’s t test, p < 2.2 3 10�12) (Figures S7B and S7C). The tight

clustering of EM-traced PNs suggests developmental co-

fasciculation of homotypic inputs to the MB calyx, and may

bias the KC sampling of olfactory input, in contrast to a purely

random model based on data pooled across multiple individ-

uals (Caron et al., 2013; see the Discussion). These results

indicate that the whole-brain EM dataset supports accurate

and efficient tracing of PNs, a representative brain-spanning

cell type.

A Previously Unknown Cell Type, MB-CP2, Provides
Input to KC Claws
To better characterize MB-CP2, we traced the entire backbone

of MB-CP2, which proved to be extensive throughout the ipsilat-

eral (right) hemisphere. A secondMB-CP2 neuron was located in

the left hemisphere. Reconstruction of its complete backbone



Figure 3. Validation of Tracing by EM-LM Registration and NBLAST-Based Geometry Matching

(A) An oblique cut plane through the EM volume, selected to reveal the projection from the AL to theMB calyx and LH via the mALT. The AL, mALT, MB calyx, and

LH are false colored to show compartment boundaries.

(B) The LM template brain is labeled with nc82 (magenta), a synapse-specific antibody commonly used to reveal neuropil compartment boundaries (Wagh et al.,

2006). After alignment to the EM volume, the same cut plane reveals corresponding neuropil compartments in both (A) and here. Nc82 labeling is absent in the

mALT, a largely synapse-free PN projection tract.

(C) A subset of LM-imaged PNs labeled with random fluorophore combinations (Y. Aso, personal communication) usingMultiColor FlpOut (Nern et al., 2015) were

registered to the template brain, and the transformation defined in (B) was used to project the PNs into the coordinate space of the EM volume. The cut plane used

in (A) reveals the PN dendrites in the AL, their axonal projections in the mALT, and their axonal arborizations in the MB calyx and LH.

(D) Overlaid data from the EM dataset (A), the template brain (B), and the LM-imaged PNs (C) show good co-registration between the respective whole-brain

image volumes.

(E) An EM-reconstructed VM2 PN (black) is projected to a template brain (gray surface mesh) using the inverse of the transformation previously defined in (B) to

align the LM template brain to the EM dataset.

(F) An NBLAST search of the FlyCircuit database for matches to the EM-reconstructed VM2 PN (black) returned an LM-reconstructed VM2 PN (red) as the top hit.

(G) An overlay of the EM- and LM-reconstructed VM2 PNs demonstrates high qualitative similarity.

Axis labels as in Figure 1. Scale bars, �100 (A–D) and �50 mm (E–G).
revealed symmetrical arborization in the equivalent contralateral

neuropil compartments, which is typical of most cell types in the

fly brain (Aso et al., 2014; Chiang et al., 2011; Jenett et al., 2012;

Ohyama et al., 2015). This confirmed MB-CP2 as a bona fide

morphological cell type (Figure 6; Video S5).

MB-CP2 boutons are presynaptic to all five known olfactory

KC subtypes (g, abc, abs, a0b0m, a0b0ap) in MB main calyx (Aso

et al., 2014). In the dorsal accessory calyx (dAC), MB-CP2 bou-

tons also provide input to abp KCs (data not shown). In all brain

regions whereMB-CP2makes output synapses, its neurites also

receive input synapses (Figure 6F). In the MB pedunculus, MB-
CP2 receives input from g KCs (Figure 6B) and gd KCs, a sub-

type originating in the ventral accessory calyx known to receive

visual inputs (Yagi et al., 2016; data not shown). Many areas

where MB-CP2 is purely postsynaptic are innervated by multi-

modal sensory and motor neurons (e.g., SMP and PLP; Hsu

and Bhandawat, 2016; Namiki et al., 2017). Therefore, MB-CP2

neurons likely relay multimodal, non-olfactory input to KCs,

and provide recurrent feedback fromKC axons in theMBpedun-

culus to KC dendrites in the MB main calyx, adding to the set of

known recurrent circuits in the MB (Aso et al., 2014; Owald and

Waddell, 2015).
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Figure 4. Survey of Olfactory PNs Providing

Driving Input to Microglomeruli in the MB

Calyx Agrees with LM Data

(A) EM-reconstructed uniglomerular olfactory PNs

in the right hemisphere recapitulate known olfac-

tory pathways (summarized in Figure 1B).

(B)A frontal viewofEM-reconstructedPNs (top) and

glomerular surface models (bottom) in AL shows

agreement with previous glomeruli reconstructions

(Couto et al., 2005; Grabe et al., 2015).

(C) A frontal-dorsal view of EM-reconstructed

boutons for three groups of PNs in MB calyx re-

veals concentric organization, consistent with LM

data (Tanaka et al., 2004). Bouton skeletons (top)

were used to generate Gaussian-smoothed bou-

ton volumes (bottom; STAR Methods) for each of

the three groups. The PN groups are DM1, VA4,

VC1, and VM2 (green); DL1 and VA6 (blue); and

DA1, DC3, and VA1d (red).

(D) Unsupervised clustering based on morpho-

logical similarity (NBLAST score) produces a

dendrogram in which olfactory PNs are grouped

by glomerular subtype.

(E) Comparison of the number of reconstructed

PNs per glomerulus from EM and LM data (Grabe

et al., 2016).

Colors in (A), (B), and (D) like in Couto et al. (2005).

PNs receive input from olfactory receptor neurons

(ORNs). The dendrite of each ORN innervates an

antennal protuberance called a sensillum. Each

PN is colored by the class of sensillum its input

ORNs innervate. Error bars indicate SD.

Axis and anatomical labels are the same as those

used in Figure 1; lALT, lateral antennal lobe tract;

LB, large basiconic; TB, thin basiconic; SB,

small basiconic; T1, T2, T3, trichoid sensilla; PB,

maxillary palp basiconic; AC, antennal coelo-

conic; AI, antennal intermediate.

Scale bars, �10 mm (A–C). See also Table S1.
Identification of Cell Types Postsynaptic to KCs in the
MB Calyx
In addition to their canonical input from PN boutons, KC den-

drites make synaptic outputs to unknown targets in the MB ca-

lyx, forming a poorly understood local microcircuit (Butcher

et al., 2012; Christiansen et al., 2011). To validate use of the

whole-brain dataset for anterograde mapping of synaptic con-

nectivity, we reconstructed and identified the postsynaptic tar-

gets of 15 KCs in the MB calyx. All dendritic presynaptic release

sites were annotated on three KCs from each of the five subtypes

in MB main calyx. Consistent with immunohistochemical data

(Christiansen et al., 2011), most (82%) presynaptic release sites

arise from abc-, abs-, or g KCs, and 87% of all release sites are

distributed along KC dendrites outside the claws (Figure 7;

Table S2). Fourteen percent of fine postsynaptic neurites were

too difficult to trace to a parent backbone with high confidence.

All KC presynaptic release sites divergently target multiple post-

synaptic processes, which in many cases arise from identified

MB intrinsic and extrinsic neurons and form local recurrent mi-

crocircuits (Figures 7E and 7F).

We found that KCs preferentially target a subset of potential

partner cell types in the MB calyx, with only four of the 14 avail-

able cell types (STAR Methods) making up 75% of the postsyn-
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aptic targets (Figure 7; Table S2). Intriguingly, a0b0 KCs (which are

dispensable for memory retrieval) (Krashes et al., 2007) were

even more selective, only synapsing onto APL and other KCs.

This selectivity could arise because either the neglected cell

types or a0b0 KCs arborize sparsely in the MB calyx; alternatively,

they could be specifically neglected despite extensive arbor

overlap and high availability of potential synapses (Stepanyants

and Chklovskii, 2005). To distinguish between these alternatives,

futurework should samplemore KCs and reconstruct to comple-

tion available postsynaptic cell types.

DISCUSSION

Here, we contribute a complete EM volume of an adult female

Drosophila brain for free use by the research community. Valida-

tion reconstructions demonstrated the reliable tracing of local

and long-range connectivity, revealing both known and new ele-

ments in the MB circuitry underlying associative learning and

recall. We conclude this volume is suitable for tracing brain-

spanning neuronal circuits at synaptic resolution. Reconstruc-

tions of the neurons reported here are included in a preconfig-

ured, downloadable tracing environment to serve as entry points

for further investigation.



Figure 5. PN Arbors in MB Calyx Cluster

More Tightly than Previously Seen with LM

across Individuals

(A) Comparison of EM- versus LM-reconstructed

PNs. EM-reconstructed PNs are shown against a

surface model of MB calyx (gray) in the left col-

umn. Calyx arbors for EM- and LM-reconstructed

PNs are shown in the middle and right columns,

respectively. Data for LM-reconstructed PNs

(right column) are from the FlyCircuit database

(Chiang et al., 2011), as registered to a common

template brain (Costa et al., 2016; see also STAR

Methods).

(B) Pairwise distances between homotypic PN

collaterals in the MB calyx. Each data point rep-

resents the distance between one pair of EM-

(red) or LM-reconstructed (blue) PNs from the

same subtype. Data points are bucketed ac-

cording to PN subtype; subtypes are ordered on

the x axis by how much more clustered EM-re-

constructed PNs are than LM-reconstructed PNs

(STAR Methods).

(C) Histogram of all data points in (B). The mean of

pairwise distances for all EM-reconstructed PN

subtypes was significantly lower than that for all

LM-reconstructed PN subtypes (3.40 ± 1.53 mm

vs. 5.49 ± 2.73 mm, respectively; Student’s t test,

p < 1.3 3 10�9).

Axis labels as in Figure 1. Scale bars, �20 (A, left

column) and �10 mm (A, middle and right col-

umns). See also Figure S7.
Generation of the whole-brain dataset was enabled by new

high-throughput hardware and scalable software for acquiring

and aligning large-scale EM data. Although improvements to

TEMCA throughput are readily achievable, alternative volume

EM imaging approaches such as multibeam-scanning EM and

FIB-scanning EM also show great promise (Eberle et al., 2015;

Xu et al., 2017). In larger animals, brain-spanning connectomics

may be achieved by low resolution EM imaging, followed by high

resolution reimaging of synaptic connectivity in selected sub-

volumes (Hildebrand et al., 2017). Although the alignment quality

shown here sufficed for manual tracing, further improvements,

such as better fine-scale registration near artifacts, may be

needed to fully leverage emerging methods for automatic

segmentation (Arganda-Carreras et al., 2017; Beier et al.,

2017; Januszewski et al., 2016). Early segmentation results on

subsets of this whole-brain dataset are nonetheless promising

(Funke et al., 2016).
The alignment of template LM brains to

the whole-brain EM volume allows EM-

reconstructed neurons to be searched

for in large on-line databases of morpho-

logically stereotyped cell types. Genetic

driver lines for cell types (Aso et al.,

2014; Grabe et al., 2015; Jenett et al.,

2012; Kvon et al., 2014) discovered to

participate in a given EM-reconstructed

circuit can therefore be readily identified.

This will facilitate testing of physiological
and behavioral hypotheses generated by newly mapped EM

wiring diagrams.

Our finding that olfactory PN arbors in the MB calyx cluster

much more tightly than predicted by LM data pooled across an-

imals is consistent with observations for pairs of neurons from

one glomerulus by Kazama and Wilson (2009). This wide-scale

clustering may generate non-random PN-to-KC connectivity,

since a KC dendritic arbor centered on a cluster of boutons

arising from a given PN subtype may oversample that subtype.

The above-chance rate of multi-claw input to KCs from a tightly

bundled subset of three PN subtypes observed in adult

Drosophila (Gruntman and Turner, 2013) is consistent with this

possibility. Our EM-based reconstruction demonstrated tight

clustering of these same subtypes (Figure 5A). However, avail-

able EM data in larva and LM data in adult Drosophila (Caron

et al., 2013; Eichler et al., 2017) indicate random sampling of ol-

factory input, which has become an assumption in many models
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Figure 6. MB-CP2, a New Cell Type

Providing Microglomerular Input to KC

Claws

(A) Reconstruction of the pair of MB-CP2 neurons

with surface meshes of the whole brain (gray) and

MB (green).

(B–E) Synaptic connectivity between MB-CP2 and

KCs in MB pedunculus and main calyx. Since

many KC claws ensheath a given MB-CP2 bouton

and KCs are traced only sparsely in this study,

most postsynaptic profiles are untraced (STAR

Methods). Arrowheads, presynaptic release sites.

(B) A representative MB-CP2 neurite (orange) in

MB pedunculus, postsynaptic to a KC axon

(green).

(C) A representative MB-CP2 neurite (orange) in

left hemisphere MB pedunculus, with comparable

synaptic arrangements to (B). KCswere not traced

in the left hemisphere, so cell identity is putative.

However, most bundled neurites parallel to theMB

pedunculus long axis arise from KCs (Leitch and

Laurent, 1996; Schürmann, 2016; data not shown).

(D) A cross-section through a representative MB-

CP2 bouton (orange) in MB main calyx at the

center of a canonical microglomerulus. Several

postsynaptic profiles arise from KC claws (green).

(E) A representative MB-CP2 bouton in left hemi-

sphere MB main calyx, with comparable synaptic

arrangements to (D). KCs were not traced in left

hemisphere, so cell identity is putative; however,

most postsynaptic elements at MB calyx micro-

glomeruli arise fromKCs (Butcher et al., 2012; data

not shown).

(F) Summary schematic of MB-CP2 input and

output brain regions with synapse counts discov-

ered following partial reconstruction (STAR

Methods). In six brain regions, MB-CP2 dendrites

are purely postsynaptic. In four other regions, MB-

CP2 neurites are both pre- and postsynaptic.

Axis and anatomical labels as in Figure 1; Ped, MB

pedunculus; dAC, dorsal accessory calyx; ATL,

antler; SC, superior clamp; PLP, posterior lateral

protocerebrum; SMP, superior medial proto-

cerebrum; SIP, superior intermediate proto-

cerebrum; SLP, superior lateral protocerebrum.

Scale bars, 100 mm (A, dorsal view), 500 nm

(B and C), and 2 mm (D and E). See also Video S5.
of odor representation (Dasgupta et al., 2017; Litwin-Kumar

et al., 2017; Stevens, 2015; but see Koulakov et al., 2011; Pehle-

van et al., 2017). Although in the larval dataset KCs were

comprehensively reconstructed at the EM level, adults have

�20x more KCs as well as additional KC subtypes (Aso et al.,

2014; Eichler et al., 2017; Lin et al., 2007), and may therefore

have a different network structure. The adult LM data were

pooled across many animals and, therefore, could be

confounded by inter-individual variability. More comprehensive

mapping of intra-animal PN-to-KC connectivity in the whole-

brain dataset will help resolve whether or not olfactory input to

KCs in adult Drosophila is random.

Kenyon cell dendrites in the MB calyx and MB-CP2 axons

contain a mixture of synaptic input and output. Mixed input/

output (I/O) neurites have previously been found in multiple re-

gions (Meinertzhagen and O’Neil, 1991; Rybak et al., 2016;
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Schürmann, 2016; Takemura et al., 2017a; Tobin et al., 2017;

data not shown), andmay turn out to be pervasive in the fly brain.

Mixed I/O arrangements can be physiologically and behaviorally

important; for example, in the antennal lobe, inhibitory inputs into

olfactory receptor neuron axons are known to mediate gain

control and temporal sharpening (Olsen and Wilson, 2008; Rac-

cuglia et al., 2016; Root et al., 2008). Thewhole-brain EMdataset

supports the identification of the cell types present at mixed I/O

synapses, an otherwise challenging class of information to

obtain.

Drosophila exhibits a wide range of complex sensory- and

memory-guided behaviors. The algorithms underlying behavior

are implemented by neuronal circuits, and neuronal circuits are

defined, in large part (though not entirely; Bargmann andMarder,

2013), by the synaptic connectivity between neurons. Therefore,

connectome maps are necessary to analyze neuronal circuits



Figure 7. KC Presynaptic Release Sites in

the MB Calyx Mostly Target a Small Subset

of Available Partners

(A–D) Morphological comparison of LM-imaged

(left panels) and EM-reconstructed (right panels)

neurons of the same class. LM data from Aso et al.

(2014). Neurite densities are lower in the EM re-

constructions, since these cells were traced to

classification, not completion (STAR Methods).

Spheres in the EM-reconstructions indicate the

location of cell bodies.

(A) abc- (green), abs- (yellow), and g- (cyan) KCs.

One representative EM-reconstructed KC from

each class is shown (right panel); their morphol-

ogies and trajectories match those of the LM-

imaged KCs of the same class. Small red square:

location in MB calyx of a g KC sub-arbor shown in

the inset (large red square). Inset: representative

location of a presynaptic release site (black

arrowhead), on a twig arising from the KC back-

bone, outside the claw sub-arbor. A micrograph of

this site is shown in (E).

(B) APL, a wide-field inhibitory neuron that in-

nervates the entire MB and sparsifies KC activity

(Lin et al., 2014; Liu and Davis, 2009).

(C) MB-CP1, a MB output neuron (MBON) with a

dendritic arbor innervating the MB calyx and pe-

dunculus (Tanaka et al., 2008).

(D) MB-C1, a putative inhibitory interneuron that innervates theMB calyx and LH (Tanaka et al., 2008). TwoMB-C1 neurons were found in the EM-based survey of

KC postsynaptic targets, in contrast to the single neuron reported by Tanaka et al. (2008). Small red square: location inMB calyx of a gKC sub-arbor shown in the

inset (large red square). Inset: representative location of a presynaptic release site (black arrowhead), on a twig arising from the KC backbone, outside the claw

sub-arbor. A micrograph of this site is shown in (F). For clarity, this KC is not shown in (D, right panel).

(E and F) Micrographs at the synapse locations shown in (A) and (D) insets. Arrowheads, selected presynaptic release sites.

(E) The g KC in (A, inset) and two other g KCs (light and dark purple) that are presynaptic to APL (green), MB-CP1 (red), and each other at the same synaptic cleft.

The APL is also presynaptic to a PN (brown).

(F) The gKC from (D, inset) is presynaptic toMB-C1 (pink), APL (green), and several additional unidentified partners. The APL postsynaptic density is two sections

away (not visible in this section plane).

Scale bars, �25 (A–D) and 1 mm (E and F). See also Table S2.
at the implementation level (Marr, 1982) and could aid in the

inference of underlying algorithms as well. The dataset we share

here should help establish a structural scaffold for future models

of circuit function in the fly and enable comparisons of circuit ar-

chitecture across species.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

The full adult fly brain electron microscopy

image dataset

This paper http://www.temca2data.org/bigtiles.html

The full adult fly brain electron microscopy

image dataset at virtualflybrain.org

This paper https://catmaid-fafb.virtualflybrain.org

Experimental Models: Organisms/Strains

Drosophila [iso] Canton-S G1 females Janelia Research Campus,

Howard Hughes Medical

Institute (HHMI)

N/A

Software and Algorithms

TEMCA2 control software This paper N/A

ATPS control software This paper N/A

CATMAID: source code Saalfeld et al., 2009; Schneider-

Mizell et al., 2016

https://github.com/catmaid/CATMAID

CATMAID: user documentation Saalfeld et al., 2009; Schneider-

Mizell et al., 2016

http://catmaid.readthedocs.io/en/stable/user.html

CATMAID: administrator documentation Saalfeld et al., 2009; Schneider-

Mizell et al., 2016

http://catmaid.readthedocs.io/en/stable/

administrator.html

CATMAID: developer documentation Saalfeld et al., 2009; Schneider-

Mizell et al., 2016

http://catmaid.readthedocs.io/en/stable/

developer.html

TrakEM2 Cardona et al., 2012 https://imagej.net/TrakEM2; https://github.com/

trakem2/TrakEM2

mpicbg transformation library and feature-

based point match generation

Saalfeld et al., 2010 https://github.com/axtimwalde/mpicbg

Section order correction Hanslovsky et al., 2017 https://github.com/saalfeldlab/section-sort

Cross-correlation-based point match generation

and slab alignment

This paper https://github.com/billkarsh/Alignment_Projects/

blob/master/00_DOC/method_overview.md

Global volume alignment This paper https://github.com/khaledkhairy/EM_aligner

Renderer This paper https://github.com/saalfeldlab/render

Image tile intensity correction (Distributed

Gradient-Domain Processing)

Kazhdan et al., 2010; this paper http://www.cs.jhu.edu/�misha/Code/DMG/

Signal-to-noise ratio quantification This paper https://github.com/bocklab/temca2data/tree/

master/SNR

Neuron skeleton analysis code This paper https://github.com/bocklab/temca2data/tree/

master/geometry_analysis

Electron-light microscopy tools (ELM) Bogovic et al., 2016 https://github.com/saalfeldlab/elm

elmr This paper https://github.com/jefferis/elmr

NBLAST Costa et al., 2016 https://github.com/jefferislab/nat.nblast

NBLAST online Costa et al., 2016 http://jefferislab.org/si/nblast

R neuroanatomy toolbox Jefferis et al., 2007;

Costa et al., 2016

https://github.com/jefferis/nat

R flycircuit Costa et al., 2016 https://github.com/jefferis/flycircuit

nat.flybrains Manton et al., 2014 https://github.com/jefferislab/nat.flybrains

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

rcatmaid This paper https://github.com/jefferis/rcatmaid

CATMAID-to-Blender Schlegel et al., 2016 https://github.com/schlegelp/CATMAID-

to-Blender

Other

CATMAID-in-a-box: installation documentation This paper http://www.temca2data.org/data.html

CATMAID-in-a-box: workstation Dell Dell Precision 5720 with 16 GB of RAM,

i5-7600 processor

CATMAID-in-a-box: operating system Dell, pre-installed Ubuntu 16.04

CATMAID-in-a-box: CATMAID with Docker Saalfeld et al., 2009 http://catmaid.readthedocs.io/en/stable/

docker.html

CATMAID-in-a-box: installation code This paper https://www.github.com/bocklab/

temca2-catmaid

CATMAID-in-a-box: RAID storage device Oyen Digital Part#3R5-EB3-M

CATMAID-in-a-box: Hard disk drive Seagate ST4000NM0035

Precision piezo motor Physik Instruments Cat#N301K151

Vacuum chamber extension to FEI T-12 TEM This paper N/A

Sample support grids This paper N/A

TEMCA2 unit camera Fairchild SciMOS 2051 Model F2

TEMCA2 scintillator, 10 mg/cm2 P43 on

5 mm Mylar

Grant Scientific Custom part

Fast Stage This paper N/A

Automated Transport and Positioning

System (ATPS)

This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Davi D.

Bock (bockd@janelia.hhmi.org). The following are available to nonprofit organizations upon request: control software for TEMCA2

and ATPS; CAD model files for the Automated Transport and Positioning System (ATPS), vacuum chamber extension to the FEI

T-12 TEM, sample support grids, and the Fast Stage.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Multiple brains of 7-day-old [iso] w1118 x [iso] Canton-S G1 adult female flies were screened and one was picked for EM imaging. By

this age, development has completed and flies are sexually mature (Ashburner et al., 2005). Females and males were maintained in

the same vials.

METHOD DETAILS

Sample Preparation
Brains from 7-day-old adult [iso]w1118 x [iso] Canton-S G1 flies were dissected in cold fly saline. The dissected brains were fixed with

2% glutaraldehyde in 0.1M sodium cacodylate for 1 h at 4�C, followed by 1 h at room temperature (RT). Following aldehyde fixation,

the brains were rinsed 63 5minwith sodium cacodylate buffer at RT, 33 10min incubations in 0.02M 3-amino-1,2,4-triazole (A-TRA)

(Sigma-Aldrich) in sodium cacodylate, the last on ice, followed by post-fixation with 1%OsO4 in sodium cacodylate containing 0.1M

A-TRA for 90 min on ice (Van Emburg and De Bruijn, 1984). The brains were then rinsed with cold sodium cacodylate buffer, allowed

towarm to RT followed by deionized orMilli-Qwater at RT before being stained en blocwith 7.5%uranyl acetate (Figure S3A) in water

overnight at 4�C. Following en bloc staining, brains were rinsed with water at RT and then dehydrated in an ascending ethanol series

to 100% ethanol, followed by 100% propylene oxide. Samples were infiltrated with EmBed 812 resin using propylene oxide to resin

ratios of 2:1 and 1:2 for 30 min each followed by 23 1 h incubations in 100% resin and a third 100% resin incubation overnight. Sam-

ples were flat embedded between Teflon-coated glass slides and allowed to harden for 24 h at 65-70�C. Samples were subsequently
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screened for whole-brain sectioning by X-ray tomography (Figure S3B) using an Xradia XRM-510 X-ray microscope (subsequently

acquired by Zeiss). Samples without obvious surface defects due to dissection, or internal defects were re-embedded in silicon rub-

ber molds for sectioning.

Sample Supports, Ultramicrotomy, and Post-staining
Custom patented 3 mm bar-coded grids made from 100 mm thick copper beryllium with a 23 1 mm slot, a unique serial identifier in

human readable and 2D barcode form and with fiducial markers were used to collect sections (Figure S3H) (Price and Bock, 2016a).

Schematics and vendor information for the custom grids are available to non-profit research organizations upon request. Grids were

prepared for picking up sections by first applying a silver/gold-color film of Pioloform (Pioloform FN, Ted Pella catalog #19244) fol-

lowed by a �8 nm layer of carbon. The Pioloform film was made thicker than normal to provide enhanced sample stability under the

higher beam current necessary for rapid imaging. To prepare the Pioloform film, a 600 mL aliquot of 2.05% Pioloform in dichloro-

ethane was applied to an ethanol and hydrofluoric acid cleaned glass microscope slide (Gold Seal, Ted Pella catalog #260210)

via spin coating using a Laurell WS400B-6NPP/Lite spin coater. After applying the Pioloform solution, the slide was spun for 1.4 s

with a target speed of 8,000 rpm and an acceleration index of 255. The film was released from the slide by scribing the edges of

the slide with a diamond scribe and slowly submerging the glass slide at a shallow angle into a large dish of water. The film remains

floating on the surface of the water and cleaned grids were then carefully placed, bar code side down, onto the film. The film and grids

were subsequently picked up from above on a 1 3 3 inch slotted and anodized aluminum slide. The anodized surface provided a

stable and reusable surface from which the grids could be cut from the surrounding support film using a heated tungsten filament.

Grids were loaded onto custom stainless steel plates for carbon coating.

Carbon coating was carried out in a Denton Explorer 14 high vacuum evaporator equipped with oil diffusion pump, liquid nitrogen

cold trap, and a film thicknessmonitor using carbon rods (Ted Pella catalog #62-132). The carbon rods were de-gassed at sub-evap-

oration currents (8-14 A) prior to and immediately following sample loading. The coating plate was held at a 90-degree angle to the

source at a distance of 10 cmduring evaporation. Following a vacuum recovery period, the carbon rodswere de-gassed andwarmed

at sub- to near-evaporation currents (8-16 A). To avoid overheating the films, carbon was evaporated in a series of cycles (in our

hands, each cycle was stopped when the deposition rate reached �0.5 Å/sec and resumed when the deposition rate returned

to 0 Å/sec). Vacuum levels prior to evaporation were�53 10�8 torr or better. Evaporation was carried out at 22 ± 1 A. Carbon evap-

oration was halted at an indicated thickness of 70 to 80 Å and final thickness assessed after a 5min cool down period. Unsuccessfully

prepared films displayed a relaxation of the film tension when held close to water (Figure S3C), whereas successfully prepared grid

films remained perfectly flat and taut when held within�1 mm of a water surface (Figure S3D). Grid batches in which the tested coat-

ings did not remain flat were rejected.

Serial sections of the brain were cut with a Leica UC-6 ultramicrotome at a thickness of 35-40 nm, with periodic retrimming of the

block face. In total, 7,062 sections were necessary to encompass the whole brain. Total sectioning time was �3 weeks. Typically,

three serial sections were collected on each custom bar-coded grid, thus �2400 grids were used for the 7,062 sections.

Following sectioning, grids were stained in 3% aqueous uranyl acetate for 20 min followed by Sato’s lead (Sato, 1968) for 5 min,

with ddH2O washes after each staining step. To facilitate the staining of�2,400 grids, a custom Plexiglass staining device with slots

to hold 100 grids at a time, loosely based on the Hiraoka (1972) device, was used.

Electron Microscopy
Two types of acquisition systems were used to image the whole fly brain series, both of which used FEI Tecnai Spirit BioTWIN TEMs.

The first, the TEMCA2 system (Figure S2A), was equipped with a custom single-axis Fast Stage (Figure S2B; patent pending) (Price

and Bock, 2016a, 2016b), vacuum extension, scintillator (5 mm Mylar on a support ring 9 5/8 inches in diameter, coated with 10 mg

fine-grained P43/cm2; Grant Scientific), and four Fairchild SciMOS 2051Model F2 5.5 megapixel cameras (25603 2160 pixel sensor

size) configured in a 23 2 array (Figure S3E). The second type of systemwas an Automated Transport and Positioning System (ATPS)

(Figures S2E, S2F, and S3I; Videos S2 and S3) (Price and Bock, 2016a, 2016b), which was equipped with a custom scintillator (6 mg

fine-grain P43/cm2; Grant Scientific), and a single Fairchild SciMOS camera. In both systems, 4:1 minifying C-lenses (AMT Imaging)

were mounted on the SciMOS cameras. These systems were previously described in abstract form (Robinson et al., 2016). Sche-

matics and model files for the Fast Stage and ATPS are available to non-profit research organizations upon request.

TEMCA2 Fast Stage

The Fast Stage (Figure S2B; Video S1) of the TEMCA2 system has a single high-speed axis of motion. It interfaces seamlessly with the

commercial FEI CompuStage goniometer, which provides the other degrees of freedom necessary to position a sample in the TEM.

The Fast Stage sample holder is connected to a drive rod, which passes through a custom rolling-element bearing, vacuum sealing

bellows, and a rolling-element damper. The drive rod is connected to a slide-mounted encoder which provides nanometer-resolution

positional feedback. It is moved linearly by a precision piezomotor (Physik Instrument cat N301K151). The custom rolling-element tip

bearing provides rigid lateral support to the drive rod within the outer drive rod tube, while minimizing axial friction required to move

the drivenmass of the system. The custom rolling-element dampers kill vibrations of the drive rod induced by the pulsedmotion of the

piezo motor during moves, reducing settle time. Without these dampers, the drive rod would vibrate for hundreds of milliseconds

under the pulsed motion of a move, rendering the system unusable. With the dampers, 8-24 mm moves are reliably achieved

where all vibrations are damped to less than 5 nm in less than 50 ms (Figure S2C). The miniature vacuum bellows isolates the
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specimen-holding region of the device from atmospheric pressure of the operating environment. By locating the vacuum bellows just

behind the O-ring in an FEI style holder, the volume needed to be evacuated after sample insertion is minimized, allowing samples to

be exchanged in the same amount of time as a conventional holder (Price and Bock, 2016b).

Image acquisition

For TEMCA2-imaged samples, a 16.2 nm/pixel pre-bake mosaic was acquired at 60 ms exposure time to pre-irradiate the sample

and reduce specimen warping and shrinkage under high-dose acquisition. The 16.2 nm/pixel mosaics were used to specify ROIs for

4 nm/pixel mosaic acquisition. The 4 nm/pixel mosaics were acquired at 35 ms exposure times. Frames were analyzed for drift in real

time and four frames with less than 16 nm frame-to-frame drift were translated into pixel-level alignment, summed, intensity cor-

rected, and saved. Mosaics were acquired in a boustrophedonic fashion column by column running down the long axis of the

2 3 1 mm slot across the three sections such that use of the fast, piezo-driven stage axis was maximized during acquisition while

slower CompuStage moves were minimized (Figure S2D). Due to non-overlapping FOVs on TEMCA2, a two-step approach was

used where a small stage displacement (�1900 pixels, or 7.6 mm) filled the gap between the FOVs, and was followed by a large

displacement (�5500 pixels, or 22.0 mm) moving to a completely fresh FOV; this schema was used on both x and y axes with

x and y steps being slightly different (5550/1950 and 5450/1850, respectively, big step/small step, in pixels). Accurate calibration

of pixels per micron is essential for converting pixel distances into physical distances and allows for pixel distances to be kept con-

stant while the conversion factor was varied depending on the indicated magnification of the microscope. Image acquisition on the

TEMCA2 systemwas performed at an indicated scopemagnification of 2900x, while the single camera ATPS equipped system oper-

ated at 4800x indicated magnification. The longer vacuum extension of the TEMCA2 system enlarged the projected image by�1.7x,

resulting in �4 nm/pixel for both systems.

ATPS grid handling

To better support automatic sample handling, we made custom 100 mm-thick beryllium-copper sample support grids, each etched

with unique identifier numbers and spatial fiducial marks (Figure S3H) to guide machine vision-based pick-and-place software for

grid exchange (Price and Bock, 2017).

The ATPS grid positioning system (Figures S2E, S2F, S3K, and S3M) mounts to an accessory port on the TEM and is a complete

replacement for the FEI CompuStage goniometer and specimen holder, providing all required degrees of freedom to position a spec-

imen within the TEM column, and incorporating a vacuum system allowing for sample exchange under vacuum. High-speed single-

axis motion is supported by the same drive mechanisms used in the Fast Stage. Other axes of motion are provided by piezo-driven

linear and electromagnetic rotary motors (Figure S2F). The rotational angle of the sample can be changed by placing the sample grid

on a rotary pre-aligner, rotating to the desired angle, and picking the sample back up again in the gripper (Video S3). The machine

vision system enabling automated handling of samples in the ATPS recorded continuous video while operating, providing visual

confirmation of proper operation and an invaluable debugging tool in the event of handling errors. To enable a continuous video

stream as well as high dynamic range images suitable for image processing, the acquisition stream automatically adjusts image

gain and exposure time for the required regime. These changes can be seen in Video S3.

Samples are organized in the ATPS as follows. The ATPS holds a magazine (Price and Bock, 2015) containing eight cassettes, and

each cassette holds 64 sample grids for a total magazine capacity of 512 sample grids (Figure S3J). The ATPS affords random access

to the individual grids, which can be retrieved, oriented, loaded into the TEM, imaged, and reliably returned to their proper address in

the ATPS. In the event of issues during grid exchange, the exchange is automatically halted, and the grids re-stowed. Re-stowed

grids were removed from the ATPS and imaged manually with a Fast Stage on a TEMCA2. The ATPS imaged samples in a two-

pass routine where grids were returned to cassettes between acquiring pre-bake mosaics and 4 nm/pixel mosaics. The interval be-

tween imaging steps allows for the designation of ROIs for 4 nm/pixel imaging. To ensure that ROIs were accurately acquired, the

ATPS found the center of the grid slot every time a grid was loaded into the TEM column. This center point was used to align

ROIs and correct for small differences in grid orientation resulting from the two-pass workflow. The ATPS system employed a single

point autofocus routine at the center of each section to determine focus for each ROI acquired. High-speed generation of mosaics

necessitates high electron dose rate at the sample (typically �180x the dose rate required for a 2 s exposure on Kodak 4489 film at

120 kV) to saturate the sensor wells within the short interval (35ms in our case, versus�1 - 2 s typical integration time). Pre-irradiation

images of the grids were used to subdivide the samples into three ROI classes: (1) included areas sufficiently free of substrate dam-

age and contaminants to sustain imaging at the highest beam currents; (2) excluded areas to bemasked out of the dataset entirely; (3)

borderline areas of usable but lower quality to be imaged at 1/10 intensity.

TEMCA2 and ATPS system control

Software control of the TEMCA2 and ATPS systemswaswritten in LabVIEW (National Instruments). Wrapper software to interface the

Fairchild SciMOS cameras with LabVIEW was written in C. Hardware triggers were used to interleave stage motion with camera

frame buffer acquisition. Each camera was read out by a dedicated analysis workstation (Dell), or ‘acquisition node’, connected

via 10 Gb Ethernet to a central ‘control node’ which managed hardware triggering, stage control, ROI specification, mosaic preview,

and user interface for hardware control. Low-latency TEM hardware control (such as beam blanking, valve operation, CompuStage

control, magnification and focus adjustments, and electron beam diameter) was achieved by direct communication between Lab-

VIEWsoftware and the FEI dynamic-link library (DLL) files supporting the FEI Tecnai scripting environment, through theDLLs’ compo-

nent object model (COM) interfaces.
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Acquisition nodes measured translational drift between successive image frames in near real-time, using the National Instruments

image analysis package. If image frame drift exceeded a user-specified threshold, the image frame was discarded and additional

frames were acquired until the requested number was acquired or until a user-specified timeout was exceeded. Each acquisition

node allocated three tiers of memory buffer to the image processing pipeline, to allow real-time acquisition to continue unimpeded,

regardless of variations in CPU load, operating system memory management, disk performance, or network throughput. In the first

tier, raw image frames were processed for drift estimation. In the second tier, sets of image frames were translated (to correct for

small translations by the sample stage), summed, normalized to a background image of the scintillator, and histogram-adjusted.

In the third tier, the summed and normalized images were written to disk. As images exited each of these buffers, memory was re-

cycled so new images could be acquired and processed. Due to the rapid rate of data acquisition, multiple storage servers, each

connected via 10 Gb Ethernet, were written to in round-robin fashion. Each server contained two RAID-6 volumes, and up to four

servers were deployed in parallel during data acquisition. If a RAID-6 volume or a server went offline, images were written to other

volumes in the available set. Solid state drives were installed in each acquisition node to allow an acquisition to complete in the event

of total network failure during acquisition. This infrastructure was capable of supporting sustained output from the two TEMCAs and

the ATPS. No data were lost due to storage or network issues during acquisition of the whole-brain EM volume.

ATPS control software was substantially similar to the TEMCA2 software except that it also controlled the ATPS hardware. ATPS-

specific functionality included machine vision-guided pick-and-place and pre-alignment of sample grids, automatic focus of the

TEM, and ROI relocation across grid picks. We also developed a user interface to let the operator define the sequence of imaging

steps to be performed as well as accompanying microscope parameters for each step. All software for control of the SciMOS cam-

eras, TEMCA2 systems, and the ATPS is available to non-profit research organizations upon request.

Section loss

Nearly all (99.83%) targeted serial section data were successfully acquired. In total 12 sections were lost prior to full resolution im-

aging (Figure S5K). Four sections (4192, 4353, 4951, 6462)) were lost during sectioning; and two grids, each containing three serial

sections (3595-3597 and 6883-6885)), were found to have ruptured support films after post-sectioning staining but prior to EM im-

aging. Two sections (4474, 3715)) were blown when electrons hit artifacts prior to full resolution imaging of the section. Sections with

debris or cracks in the support film were imaged in two rounds: a high-dose, high-throughput round, excluding potentially fragile

areas of a section; and a subsequent low-dose, slow exposure round, of the fragile region only. Twenty-five sections in nine grids

ruptured toward the end of the second-round imaging when the low-dose electron beam hit artifacts. However, a majority (if not

the entirety) of the section was already successfully imaged. In this case, although the sections were successfully imaged, the sup-

port film rupture precludes future re-imaging of these sections.

The largest serial section gaps were of three adjacent sections (sections 3595-3597 and 6883-6885; the result of two support film

ruptures while grids were in storage, awaiting imaging). No other adjacent sections were lost. Image acquisition of the whole-brain

began before the ATPS was complete, so most (�83%) of the sections were acquired by the TEMCA2 systems, and the remainder

was acquired by the ATPS. No sections were lost or damaged due to ATPS or Fast Stage malfunction.

Acquiring the whole brain

The data were acquired over a period of�16 calendar months. The TEMCA2 systems were staffed by a single microscopist, working

normal business hours; a second microscopist staffed the ATPS once it came online. Eighty-three percent of imaged sections were

acquired with a TEMCA2 system (4.3 million Fast Stage moves), while the ATPS was still in development, and 17% of imaged sec-

tions were acquired by the ATPS (3.5 million grid positioning system moves; �6,800 machine vision-guided steps to pick, pre-align,

and re-stow each grid). Eighty-two percent of ATPS grid exchangeswere successful; 14%were automatically halted and the grids re-

stowed, usually due to variations in the manual placement of grids in the ATPS cassettes or inhomogeneities in the support film; and

4% required manual control of the ATPS for re-stowing. Re-stowed grids were removed from the ATPS and imaged manually with a

Fast Stage on a TEMCA2.

Acquisition rates

The TEMCA2 per-section acquisition rate is 50 MPix/s, which does not include overhead such as sample exchange time and defi-

nition of ROIs. Since the ATPS only has one camera instead of a 23 2 array, its per-section acquisition rate is�1/4 that of a TEMCA2,

or 12.5 MPix/s. With overhead included, our effective per-grid throughput for TEMCA2 was 27 MPix/s. The TEMCA2 overhead

was �10 min per grid, whereas the ATPS overhead was �5 min per grid due to autonomous sample exchange and predefined

ROIs. Therefore the per-grid throughput for the ATPS was 8 MPix/s, slightly faster than 1/4 of the TEMCA2 per-grid throughput. If

an ATPS was mounted on a TEMCA2 system it could achieve another 4-fold throughput increase, for �32 MPix/s per-grid

throughput. Microscopist supervision was needed for most of the whole-brain acquisition. Assuming a 2000-hour work year

(50 weeks at 40 hours per week) for �16 months, it took �2,666 microscopist hours to acquire the �106 TB whole-brain dataset.

Estimated operator throughput, derived from the total microscopist hours, is therefore �11 MPix/s.

The ATPS grid exchange failure rate (18%) hadminimal impact on its daily productivity for two reasons. Formost exchange failures,

the problematic grid was re-stowed automatically and imaging of the next grid began. Grids that were not successfully acquired by

the ATPS were unloaded from the ATPS cassettes and imaged manually on a TEMCA2.

For comparison of acquisition rates between the TEMCA2 and other techniques, per-section throughput was used for ssTEM and

TEMCA2. For ssTEM, TEMCA, and TEMCA2, step and settle times for sample motion during mosaic acquisition were included. Data

rates for ssTEM were calculated based on image acquisition parameters used by one of us (RF) during acquisition of the dataset
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described in Takemura et al. (2013). Data rates for FIB-SEM, SBEM, and ATUM-SEM were calculated from published values (Brigg-

man and Bock, 2012; Kasthuri et al., 2015).

Volume Reconstruction
Volume reconstruction includes stitching images from a single thin section into a coherent mosaic and aligning mosaics across all

sections. Stitching and alignment of ssTEM images into a traceable volume must overcome artifacts and distortions introduced in

sample preparation, serial sectioning, pickup, staining, and imaging of samples. During sectioning, ultrathin sections can be torn,

misfolded, or lost completely. EM-dense debris may be introduced during sectioning and/or post-staining of thin sections, obscuring

the sample during imaging (Figures S5D and S5E). This debris can charge and heat in the electron beam, putting the support film at

risk of rupturing. The sample can also deform during high-intensity imaging. These challenges have largely been addressed for

smaller EM volumes (Saalfeld et al., 2012), but the scale of the whole fly brain required the development of a cluster-backed software

alignment pipeline to successfully assemble the dataset. Importantly, the new alignment pipeline also enabled projection of traced

neuron reconstructions across different versions of the aligned dataset. This allowed tracing to begin before acquisition of the entire

series was complete, and preserving tracing done in previous versions of the aligned volume.

Data migration

Camera images were written in a round-robin fashion acrossmultiple high-speed storage servers. Mosaics selected for inclusion into

the final reconstructed volumewere copied to a centrally managed distributed file system at Janelia Research Campus offering high-

throughput connectivity to the computational cluster as well as off-site backups. All images were checksum verified after file copy

operations.

Calibration mosaics

In our TEMCA2 system, we operated with a wider FOV than a conventional TEM which comes at the cost of individual images

showing significant non-linear distortion. This distortion is the accumulation of camera lens-distortion, variation in camera mounting,

and warping in the electron beam path. We compensated for this distortion using the lens-correction method available in TrakEM2

(Cardona et al., 2012; Kaynig et al., 2010) followed by affine normalization between all distortion models. For each individual camera,

we imaged a 33 3 mosaic of redundantly (60%) overlapping tiles of a neuropil compartment in one of our sample grids. This mosaic

was then used to estimate a non-linear distortion correction model in TrakEM2. To compensate for the remaining affine distortion

(scale and shear) of each of these camera models, we imaged a large reference mosaic in the neuropil compartment of three refer-

ence sections (to account for accidental section loss) that we then jointly aligned with TrakEM2. This way, we obtained a globally

consistent camera calibration model for each individual camera. We repeated the calibration step each time an imaging system

was adjusted.

Stitching and alignment

The image acquisition process provides partially overlapping images that are assumed to cover each entire section. Image mosaics

need to be stitched within each z section plane, as well as aligned across z to produce a seamless volume. The stitching and align-

ment process includes: (1) matching point-pairs within mosaics, (2) matching point-pairs across mosaics, (3) registering high-dose/

low-dose images, (4) section order correction, and (5) solving the volume.

Details of the methods and documentation of actively used code are available at:

https://github.com/billkarsh/Alignment_Projects/blob/master/00_DOC/method_overview.md

https://github.com/billkarsh/Alignment_Projects/blob/master/00_DOC/ptest_reference.md

https://github.com/khaledkhairy/EM_aligner

Matching point-pairs within mosaics

The first step of the stitching process is to match putatively identical content between pairs of overlapping images; those matched

point-pairs are stored in a table. Matching was done within each of the serial sample sections (z-layers), considered independently of

any other sections. Two neighboring images would match essentially perfectly except for very slight differential beam heating.

TEM stage coordinates provide useful guesses about which pairs of images have overlaps worth characterizing, as well as the

expected relative transform between pair members that we can use to constrain content matching. For each prospective pair of im-

ages we first perform coarse matching using normalized fast fourier transform (FFT)-based cross-correlation to obtain a best rigid

transform between them: relative rotation and xy-translation. The expected constraint transform enters as a mask describing a

disc of preferred xy-translations within the correlation image.

The coarse transform between image A and B is then refined using a deformable mesh as follows. Within the overlap region of A

and B, the A-pixels remain at fixed coordinates. For the B-image pixels, we erect a mesh of triangles and each of the B-pixel coor-

dinates within are translated into barycentric coordinates (functions of the triangle vertices) which are variables. The normalized

cross-correlation between A and B can now be expressed as a function of mesh vertex coordinates. A gradient descent process

is used to find vertex positions that optimize correlation.

The reported point-pairs linking A to B are derived from the triangles of themesh. Image-point A is defined as the centroid of a given

mesh triangle prior to optimization. Its corresponding B-image point is obtained by calculating the affine transform that takes the tri-

angle to its optimized counterpart, and applying that to the A-centroid.
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Matching point-pairs across mosaics

Since the layers are nominally 40 nm thick and neural processes propagate through tissue at all possible angles, content in adjacent

layers is grossly similar but isn’t a precise match. Nevertheless, content-based matching as described above for same-layer image

pairs (FFTs followed by deformable mesh optimization) works very well if combined again with expected pair-pair transforms for

which we have high confidence.

First we match whole layers to each other: For each layer, individually, we collect the reported in-layer point matches and solve for

its set of affine transform parameters that register that layer’s 2D images to form a so-called montage. These data are used to render

the layer at a reduced scale (�20X) to an image that we call the ‘montage scape’. Scale reduction allows the problem to fit comfort-

ably in RAM, reduces computation time, and most importantly, emphasizes larger size tissue features such as large neurites running

parallel to the z axis, which vary slowly as a function of Z. Each pair of montage scapes ismatched by FFT cross-correlation at a series

of angles and the best correspondence is determined. This is followed by manual inspection using TrakEM2 (Cardona et al., 2012) to

verify this rough alignment.

Registering high-dose/low-dose images

High-dose/low-dose imaging (see Electron Microscopy) of robust and fragile areas of a section, respectively, could be stitched

together seamlessly (Figures S5D–S5F). The majority of high-dose/low-dose sections are acquired during a single session, without

the sample being removed from themicroscope. Therefore, a reliable first guess for relative positions of these layer patches is usually

provided. Generally, high-dose/low-dose sections are registered in a process that takes advantage of components of the general

registration pipeline above. Montages of individual acquisitions are generated and their point-matches stored. All montages sharing

the same z-value (i.e., the high-dose/low-dose group of sections), together with reference neighbor ‘sandwich’ sections are treated

as a set of sections that are roughly aligned to each other as if they were all separate sections. This rough alignment is used to deter-

mine potential overlap of high-dose and low-dose areas. Tile-pairs are determined and their point-matches calculated and stored.

Finally, all point-matches (within-layer, across high-dose/low-dose patches, and cross-layer to neighboring reference sections) are

used to solve a linear system to determine transformation parameters for a seamless registration.

Section order correction

We implemented a fully automated procedure for whole-layer matching. Image features are extracted from section montages (Saal-

feld et al., 2012), and point-correspondences are determined for all pairs of sections within a range of expected ordering mistakes

(in our case within 100 sections). During alignment of the volume, �250 sections were found to be misordered. We then used the

number of point-correspondences between two sections as a surrogate for their inverse relative distance and identified the shortest

possible path to visit all sections, resulting in an ordered series (Hanslovsky et al., 2017). Then, a regularized linear system is solved to

calculate an affine transformation for each section that roughly aligns the volume.

With all of the layers now coarsely aligned, we subdivide each layer into an array of ‘blocks’ (�10 3 10 neighborhoods of camera

images). We again step angles and calculate FFT cross-correlation, this time on pairs of corresponding blocks to find the best block-

block cross-layer transforms. As a result we know which images within the blocks pair with each other and what their relative

transform ought to be. Again, we subdivide each image into local regions, estimate point correspondences using FFT-based

cross-correlation, and collect these correspondences in a database.

Solving the volume

With the full set of point-pairs tabulated, each image is typically connected to several of its neighbors. We then construct a system of

equations requiring that, under the sought affine parameter set that defines each image transformation, point-pairs shouldmap to the

same global point in the reconstructed volume. To avoid spurious deformation and volume shrinkage, the equation system is regu-

larized to a roughly aligned volume. This roughly aligned volume depends on individual montages that were in turn regularized to a

rigid model approximation that is independently estimated. The full system constitutes a large linear sparse matrix problem, whose

solution provides the globally optimal transformation for all images simultaneously.

Sources of error

Wrong (low-quality) point-pairs. These may occur due to the self-similarity of nominally good quality neural EM images. Errors are

even more likely in tissue regions that are substantially devoid of neurons or texture, such as the lumen of the esophagus, or along

the outer boundary of the sample where tissue is sparse or even absent from several camera images. To address this error we employ

(a) auxiliary contextual information about the likely transform between any two images that constrains matching derived from local

image content alone, and (b) we impose a strict point-matching filter using Random Sample Consensus (RANSAC) (Fischler and

Bolles, 1981) to separate true correspondences that behave consistently with respect to an affine transform up to a maximal corre-

spondence displacement (Saalfeld et al., 2012).

Missing point-matches. In some cases tissue damage, contamination or folds within a section lead to a lack of point-matches in a

smaller region within the volume. This is most prominent when searching for point-matches across z. We address this issue by ex-

tending the point-match search beyond immediate neighbor sections.

Image Intensity Correction

Variations in section thickness, electron beam etching, or deposition of contaminants from post-staining or section pickup create

intra-mosaic variations in camera image intensity. For ease of tracing, these variations were corrected (Figures S5G–S5J) using a

scalable implementation of an existing algorithm (Distributed Gradient-Domain Processing) (Kazhdan et al., 2010).
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During iterative volume reconstruction, gradient-domain processing is used to remove seams in two dimensions. A target gradient

field is constructed by computing the gradient field of the input mosaic and zeroing out seam-crossing gradients. Then, a least-

squares system is solved to find the new image whose gradients best fit the target field. In addition, low-frequency modulation is

removed by computing the windowed average of adjacent mosaics and replacing the low-frequency components of an input mosaic

with the low-frequency components of the average. We anticipate that future work will allow 3D processing of the whole-brain image

volume (Kazhdan et al., 2015), reducing or eliminating section-to-section variations in intensity.

Projection of tracing across alignments

With each new alignment, the CATMAID PostgreSQL database containing all neuronal skeleton coordinates (Schneider-Mizell et al.,

2016) is dumped to retrieve their ‘world’ coordinates (coordinates representing their physical location in the brain). Each of these

world coordinates is then inversely transformed using the Renderer service (see Stack management and relational database) to a

set of ‘local’ coordinates detailing the source tile visible at that location and the relative location within. The local coordinates are

projected back into world coordinates using the new alignment’s transformations. The updated coordinates are then applied to a

new copy of the database.

Stack management and relational database

We created a relational database for storing and querying metadata associated with the thousands of image mosaics and millions of

acquired images. We use SQL Server 2012 for our production system and SQLite for development. Metadata required for down-

stream processing included: paths to image data (with checksums), stage coordinates, ROIs associated with nominal section

numbers, ordering of sections and microscope configurations with associated calibrations. The input for the alignment process –

a stack – can be generated with a single SQL query joining themajority of tables. The result is a list of images with their layer (z), stage

coordinates (x,y), and camera configuration (for associating the correct lens correction model).

The alignment process of the approximately 21 million images and associated projection of already-traced skeletons between

alignment iterations is computationally expensive. To manage this we developed the Renderer toolkit (https://github.com/

saalfeldlab/render), a set of image stack management tools and RESTful HTTP web services now in use in multiple additional pro-

jects. Renderer was designed in order to handle large -scale (hundreds of millions) individual records efficiently while supporting

large-scale concurrent access for the stitching, section order analysis, skeleton mapping and intensity correction. Briefly, Renderer

is able to quickly materialize (i.e., render) modified images for a set of transformation parameters using the mpicbg transformation

library (https://github.com/axtimwalde/mpicbg). The use of the mpicbg library allows simple conversion between the Renderer data-

base (a MongoDB instance) and TrakEM2 projects. For large-scale rendering and coordinate mapping, we used Java stand-alone

and Spark framework clients to allow it to be processed in bulk on a cluster.

Assessment of alignment quality

Reconstructed neuron skeletons typically recapitulate the natural tortuosity of neuronal arbors, but can be distorted artificially by

sectionmisalignments. Large abrupt changes in the coordinates of skeleton nodes often indicate section misalignments. To evaluate

the alignment quality of the data, smoothness of reconstructed neurons was assessed. The reconstructed skeletons of all PNs, KCs,

and the APLwere convolvedwith aGaussian kernel (s = 12 mm). Theswas chosen to eliminate large abrupt changes in the skeletons.

The distance between each node of the original skeletons and the smoothed skeletons was computed, and the mean distance for all

skeleton nodes in each section was then calculated. The absolute difference between the mean distance in each section and that in

the preceding section was computed, which we call the displacement (Figure S5L). The median and the 95% percentile of the dis-

placements are 0.09 mm and 0.57 mm, respectively.

Neuron Tracing
Neuron reconstructions are based on manual skeleton tracing of neuronal arbors and annotation of synapses from image stacks in

CATMAID (http://www.catmaid.org) as described in Schneider-Mizell et al. (2016). All neurons included in analyses are reconstructed

by at least two team members, an initial tracer and a subsequent proofreader who corroborates the tracer’s work. In the event that

any tracer or proofreader encounters ambiguous features (neural processes or synapses that are not identifiable with high confi-

dence), they consult other tracers and proofreaders to determine the validity of said features, climbing the experience ladder up

to expert tracers as needed. If any feature remains ambiguous after scrutiny by an expert tracer, then said feature is not included

in the neural reconstruction and/or flagged to be excluded from analyses. During the proofreading phase, the proofreader and tracer

iteratively consult each other until each neuron is deemed complete per the specific tracing protocol to which it belongs. An assign-

ment of completion does not necessarily entail that an entire neuron’s processes and synapses have been reconstructed (see

Tracing to classification and Tracing to completion). We traced 114 PNs, the APL, two MB-C1s, MB-CP1, and two MB-CP2 neurons

to classification (120 neurons in total). We also traced the calyx sub-arbors of the 15 KCs to completion, and their remaining sub-

arbors to morphological, but not synaptic, completion. The total cable length of the neurons above is 206.6 mm.

The criteria to identify a chemical synapse include at least three of the four following features, with the first as an absolute require-

ment: 1) an active zone with vesicles; 2) presynaptic specializations such as a ribbon or T-bar with or without a platform; 3) synaptic

clefts; 4) postsynaptic membrane specializations such as postsynaptic densities (PSDs). In flies, PSDs are variable, clearer at

postsynaptic sites of KCs in a microglomerulus but often subtle, unclear, or absent in other atypical synaptic contacts (Prokop
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and Meinertzhagen, 2006). In the absence of clear PSDs, we marked all cells with membranes that have unobstructed access to a

clearly visible synaptic cleft as postsynaptic. We did not attempt to identify electrical synapses (gap junctions), since they are unlikely

to be resolved at the resolution of this dataset.

Very rarely, aberrant neurons were found in the dataset. For example, two PNs with a piece of fused cell membrane were discov-

ered in our tracing. It is unknown what factors might cause this, but cell membrane pathologies resultant from EM fixation protocols

have been observed (Kopek et al., 2017). Overall, however, the ultrastructural quality of the whole brain was excellent.

Tracing to classification

Often only reconstruction of backbone (e.g., microtubule-containing backbone neurites) (Schneider-Mizell et al., 2016) or gross

morphology is needed to classify a neuron based on expert identification or NBLAST-based neuron searching against an existing

LM dataset. If either approach fails to find a match (as in the case of MB-CP2 in our study), the neuron may be deemed a new

cell type. Neurons traced to classification are at a minimum skeletonized, with or without synapses, to the point at which their gross

morphologies (or backbone skeletons) unambiguously recapitulate that observed by LM for a given cell class, or are unambiguously

deemed as a new cell type not previously observed in LM databases from NBLAST neuron morphology search and/or multiple

experts.

Tracing to completion

All steps for tracing to classification were completed. Additionally, for morphological completion every identifiable neurite is traced,

and for pre- or postsynaptic completion every identifiable presynaptic release site or postsynaptic density, respectively, on the

neuron is annotated. Some neurons were traced to morphological or synaptic completion only in certain brain regions (e.g., PNs

were traced to morphological, but not synaptic, completion in the MB calyx).

Quantification of tracing speed

We reconstructed 114 olfactory PNs to classification and 15 KCs to morphological, but not synaptic completion, for a total cable

length of 153.4 mm and 11.6 mm, respectively. The mean PN cable length was 1.35 mm and the mean KC cable length was

0.78 mm. The PN total construction time was 1,272 h and the KC total construction time was 166 h, with mean per cell construction

times of 11.2 h and 11.1 h. To calculate tracing speed we divided the mean cable length produced by the sum of the mean time

required for both manual tracing and proofreading for all 114 PNs and all 15 KCs reported in this manuscript. Tracing and proof-

reading timestamps for all additions, deletions, modifications, and proofreading of skeleton node events were recorded into a data-

base and can be queried via a history widget in the CATMAID tracing environment. Construction time was measured as active bouts

of tracing and proofreading. Active bouts were defined as temporal windows duringwhich tracing and proofreading timestampswere

continuously applied to a neuron by each user with no larger than a 3min pause. Any 3min pause or longer introduced a gap between

active bouts, and the next active bout began at the next timestamped event of that neuron. The duration of active bouts for all users

for each neuron was then summed to determine total tracing and proofreading time.

Validation of tracing accuracy

To test the reproducibility of tracing in the whole-brain EM dataset, three independent teams each comprising two members, one

tracer and one proofreader, each reconstructed one KC sub-arbor to completion in tracing environments blinded to each other (Fig-

ure S6). The KC sub-arbor included the soma, all arbors in theMB calyx, and a proximal portion of theMBpedunculus (Figure S6A). In

the fly brain, microtubule-free neurites (twigs) as fine as 40 nm in diameter tend to extend for short distances before joining larger,

microtubule-containing backbone neurites (Schneider-Mizell et al., 2016). KC claws are good examples of twigs, whereas their den-

dritic trunks and the axonal neurite leaving theMBcalyx are larger-diameter backbones. In the tracing phase, the tracer had access to

the proofreader for consult and verification. During the proofreading phase the proofreader had access to the tracer for consult and

verification. The neuronal arbors and associated synapses reconstructed by each team were essentially identical for both twigs and

backbones. An expert validated all sites of disagreement between the three teams to determine a ‘gold-standard’ skeleton of the KC.

PN-to-KC claw inputs with high synapse counts were detected in all three reconstructions (Figure S6B). Consistent with a tracing

approach biased toward false negatives rather than false positives, only one input with low synapse count was missed by one of

the tracing teams (Figure S6, red asterisks).

We re-implemented a skeleton-to-skeleton agreement measurement (Helmstaedter et al., 2011) to locate the sites of discrepancy

between the skeletons of each of the three teams and the gold-standard skeleton, respectively. All skeletons were resampled with an

interval of 80 nm (Schneider-Mizell et al., 2016), and nodes from each team skeleton were compared with nodes from the gold-stan-

dard skeleton. Each team node was considered to be consistent with a gold-standard node if the team node was within 800 nm of a

gold-standard node. Thresholds smaller than 800 nm resulted in correct reconstructions of lower order neurites to be inconsistent.

We visually inspected the inconsistent nodes to determine the number of errors. All errors were false negatives. The length of missed

skeletons for each error was measured (Figure S6A). Error rates differ significantly between microtubule-containing backbones and

microtubule-free twigs (Schneider-Mizell et al., 2016). In our tracings, the shortest path from soma to MB pedunculus of the KC

(spine), and the first order branches of the spine (arms) that give rise to the claws were classified as backbone as these neurites

contain microtubules. The remaining higher order branches (e.g., claws) are considered twigs. We found no errors for 167 mm of

backbone skeletons, and the twig (287 mm) mean error rate was 37.9 mm/error. The total mean error rate for the gold standard KC

skeleton was 60.8 mm/error (mean number of disagreements was 7.3 across a neuron 454 mm in extent). Our error rates were

compared with those from two previous studies. In mammalian retina (Helmstaedter et al., 2011), the total mean error rate for

five-fold independent tracing of a single neuron was 83.4 mm/error (mean number of disagreements was 7.2 across a neuron
e9 Cell 174, 730–743.e1–e14, July 26, 2018



600 mm in extent); backbone and twig error rates were not reported separately. In Drosophila larva, the mean error rate for an iter-

atively traced skeleton was 375.8 mm for backbone (three errors) and 16.2 mm for twigs (95 errors) (Schneider-Mizell et al., 2016).

In total 1127 mm of backbone cable length and 1,539 mm of twig cable length were traced. Therefore, with 98 errors across a neuron

2,666 mm in extent, the total mean error rate was 27.2 mm/error in the larva.

Tracing of PNs

Three protocols were used to reconstruct PNs on the right side of the brain. First, putative PN boutons presynaptic to all claws

of�200 KCs traced from a separate ongoing effort were seeded and traced to classification. Second, a seed section at the postero-

lateral bend of the mALT, proximal to MB calyx, was selected and all neurons not found via the first protocol were traced directly

toward the calyx. Neurons that innervated MB calyx were traced to classification, whereas those that bypassed calyx were halted.

Third, a thorough visual survey of the MB calyx was conducted to ensure that all microglomerular structures had been identified and

the untraced boutons within these microglomeruli were seeded with single skeleton nodes then traced to classification.

We focused our classification efforts on uniglomerular olfactory PNs that provide input to the MB main calyx. Additional PNs were

discovered but excluded from PN counts per subtype (Figure 4E) if they bypass calyx. The expert identification of PN subtypes was

based on gross morphology. Key diagnostic features included the somatic locations, projection tracts, and distribution of arbors in

the AL (the glomerulus innervated by each PN), MB calyx, and LH. Classification of olfactory glomeruli in AL followed that of Grabe

et al. (2015), with a few exceptions: we did not attempt to classify VP2, VP3, and VP4 because they are either non-olfactory or multi-

modal (Enjin et al., 2016; Grabe et al., 2015); our reconstructions indicated clear independent domains for VC3l and VC3m glomeruli

(consistent with Chou et al., 2010; Silbering et al., 2011); and VC3l and VC5 could not be disambiguated. PNs arising from these two

glomeruli were therefore left unclassified, but future tracing of the neurites from neurons in surrounding glomeruli may clarify their

identities. Following Grabe et al. (2015) and Yu et al. (2010), VM6 and VP1 were combined into a single glomerulus due to morpho-

logical ambiguities, which we label as VM6 in this work. Reconstruction of ORNs, multiglomerular/multimodal PNs, and tracing of

PN dendrites to completion, will likely clarify remaining ambiguities in glomerular classification.

Axonal boutons of PNs in the MB calyx were identified by varicosities containing arrays of presynaptic active zones, each of which

was apposed to many postsynaptic processes (Figure S1A). Skeleton nodes at the varicosity/intervaricosity borders were tagged as

‘bouton borders’ such that they contained all synapses inside each varicosity.

Of the 578 microglomerular boutons in MB main calyx, 497 arose from olfactory PNs (86%, from 114 PNs). Of these, 16 boutons

(3%) arose from six olfactory multiglomerular PNs. The other inputs include 17 boutons (3%) arising fromMB-CP2; nine boutons from

other PNs (2%, arising from four neurons), traveling either via tracts alternative to themALT (eight boutons from three PNs) or from the

subesophageal region (one bouton from one putative PN; data not shown); 55 boutons (9%) from the other 10 unidentified (presum-

ably non-olfactory, e.g., thermosensory, hygrosensory) multiglomerular or uniglomerular PNs.

Tracing MB-CP2 to classification

The two MB-CP2 neurons were traced to classification. In this process, many second order branches within each neuropil compart-

ment were traced. To obtain a representative sample of the synapses in the right hemisphere, we selected several third order

branches in each brain region, traced them to their terminal processes (the highest order of branching within that region), and anno-

tated all synapses on these neurites. We identified its synaptic partners in cases where those neurons had already been traced for

other purposes (e.g., previously reconstructed KCs). Most cell types in the fly brain have symmetric contralateral equivalents (Aso

et al., 2014; Chiang et al., 2011; Jenett et al., 2012). Therefore we also reconstructed the contralateral MB-CP2 neuron and its

synapses to assess the symmetry of its morphology and connectivity, a previously used technique to validate the reconstruction ac-

curacy of known and previously unidentified cell types in the Drosophila larval EM volume (Eichler et al., 2017; Ohyama et al., 2015;

Schneider-Mizell et al., 2016) (Figure 6A). Fewer processes and synapses were traced and annotated for the MB-CP2 neuron in the

left hemisphere than for the MB-CP2 neuron in the right hemisphere.

Kenyon cells and their postsynaptic partners in the MB calyx

Three KCs from each of the five KC classes that innervate MB main calyx (g, abc, abs, a’b’m, and a’b’ap) were randomly selected

from a larger set of several hundred KCs already traced to classification as part of a separate, ongoing study. Only presynaptic sites in

the neuropil region of the MB calyx were included. Synapses in MB pedunculus and lobes were not reconstructed. All postsynaptic

partners at each presynaptic site were enumerated and traced to classification.

The 14 previously known cell types that could potentially be postsynaptic partners of KCs in MBmain calyx were enumerated by a

literature search. They are: the octopaminergic ventral pairedmedian neurons (OA-VPM3 andOA-VPM5), the octopaminergic ventral

unpaired median neuron (OA-VUMa2); the putatively GABAergic glutamic acid decarboxylase interneurons (GAD1-GAD4), MB-C1,

MB-C2; the contralaterally projecting serotonin-immunoreactive deutocerebral (CSD) neuron; the dopaminergic posterior lateral pro-

tocerebum neuron (PPL2ab); the MB calyx MBON MB-CP1; the lateral horn leucokinergic (LHLK) neuron; and the APL (Aso et al.,

2014; Burke et al., 2012; Busch et al., 2009; Chen et al., 2012; de Haro et al., 2010; Mao and Davis, 2009; Roy et al., 2007; Tanaka

et al., 2008).

Neuronal Informatics
Electron-Light Microscopy registration tools (ELM)

The ELM tool provides a user interface to interactively define a thin plate spline 3D warp field between an LM dataset and the

whole-brain EM dataset by manually specifying corresponding landmark points. It was built on top of the BigWarp Fiji plugin
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(Bogovic et al., 2016), which in turn was built on top of the BigDataViewer plugin (Pietzsch et al., 2015) for Fiji (Schindelin et al., 2012).

The ELM software is aware of standard compartment boundary models available for the template fly brains and provides hotkeys to

view the labels for these compartments; to go between coordinates in ELM and the EM dataset as viewed in CATMAID; and to go

from a CATMAID URL to the corresponding point in ELM. Code for ELM is available at https://github.com/saalfeldlab/elm. This soft-

ware can be used to map individual LM-imaged neurons that have been registered to a template brain into the EM whole brain.

An LM image volume of a whole fly brain in which random fluorophore combinations are expressed in a subset of PNs (MultiColor

FlpOut) (Nern et al., 2015) was kindly provided by Yoshino Aso and colleagues (Y. Aso, personal communication). The image volume

was registered to the JFRC2013 template brain. Using the JFRC2013-to-EM volume transformation defined above the PNswere then

projected into the coordinate space of the EM whole brain.

Transforming data between EM and LM templates: elmr

The elmr software tool is a package (https://github.com/jefferis/elmr) written in R (http://www.r-project.org) to facilitate bidirectional

transfer of 3D data between the EMwhole-brain dataset and LM template brains. This package reproduces the thin plate spline trans-

formation that maps between thewhole-brain EM volume and the JFRC2013 template brain (Aso et al., 2014) from the landmark pairs

exported by the ELM tool described in the previous section. Using an approach described by Manton et al. (2014), 3D data can then

be transformed into other light level template brains used by the fly neurobiology community, including the template (JFRC2, a.k.a.

JFRC2010) (Jenett et al., 2012) used for data on the virtualflybrain.org site. This process depends on an additional R package (nat.fly-

brains, https://github.com/jefferislab/nat.flybrains) that provides non-rigid registrations defined with the CMTK image registration

toolkit (https://www.nitrc.org/projects/cmtk). This and all additional R packages used for subsequent analysis are automatically

installed as dependencies of elmr. Inverse transformation is also supported, enabling data registered to a light level template to

be projected into the space of the whole-brain EM volume.

Surface models of neuropil compartments

Previously defined surface models of the whole fly brain and several brain regions (Ito et al., 2014; Jenett et al., 2012; Manton et al.,

2014), based on the same template brain as the virtualfybrain.org project (https://github.com/VirtualFlyBrain/

DrosAdultBRAINdomains), were transformed (Manton et al., 2014) to the EM volume using elmr. The AL glomerulus meshes were

generated in Blender (https://www.blender.org/) from EM-reconstructed skeletons of PN dendrites and ORN termini retrieved

with the CATMAID-Blender interface (Schlegel et al., 2016).

Remote deployment for tracing in the whole brain (‘‘CATMAID-in-a-box’’)

We provide a preconfigured tracing environment including the CATMAID tracing software, the reconstructed neurons presented in

this manuscript, and scripts to download the entire EM volume from the temca2data.org website (http://www.temca2data.org/). The

CATMAID software has built-in functionality for importing and exporting neuron skeletons, which facilitates sharing of traced neurons

across laboratories.

Groups wishing to use CATMAID-in-a-box will need a mid-range Linux or Mac workstation capable of running Docker Community

Edition and 12 TB of disk space to store the EM volume. We tested a Dell Precision 5720 (16 GB of RAM with a quad-core 3.5 GHz

Intel i5-7600 processor) and a commodity external RAID-5 enclosure configured with five 4 TB hard disk drives. Full details for sug-

gested configurations are maintained on the temca2data.org website.

CATMAID (and its backing PostgreSQL database) are distributed as Docker containers to facilitate installationwithout complicated

dependencies. The full 12 TB image volume is downloaded over the Internet. The provided script to download data will checkpoint its

status to allow resumption in the event of network interruption. Full step-by-step installation instructions are provided on the

temca2data.org website.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison of SNR between Volume EM Datasets
Determining the SNR of biological images is in general a subjective task, due to its variance under non-linear transformations (Erdog-

mus et al., 2004). As users of this data will likely care about biological structures, the determination of SNR should account for this,

considering only the level of signal of these structures and not of things such as staining or cutting artifacts. The problem of SNR

determination has been thoroughly treated in the case of super-resolution imaging where these ambiguities don’t exist (Lambert

and Waters, 2017; see also Supplementary Note 1 in Li et al., 2015), but as yet there are no universally accepted, automated tech-

niques to calculate the SNR in individual imageswhere signal is dense in both spatial and frequency spaces, such as EMdata of brain.

We present twomeasures of SNR here, an automatedmeasure which avoids user biases, but can include some signal in noise and

background calculations (feature-based SNR), and a simple technique which gives more precise SNRs but is prone to bias (the cell

membrane technique) which we use to verify the feature-based SNR calculation. We apply these techniques to a range of publicly

available data in order to evaluate the TEMCA2 method. Sample images from each dataset are shown in Figure S4A.

We assume all methods are shot-noise limited. For comparison purposes SNR values are normalized to the TEMCA2 voxel size

(43 4 x 40 nm) by the square root of the source data’s voxel size. In both the feature-based SNR and the cell membrane SNR mea-

sures, we assume that noise is additive (and is independent of the magnitude of the signal) and symmetric. Such an assumption is

likely false (e.g., electron shot noise is Poissonian and not symmetric at low numbers), however, such impacts are likely small

based on manual examination of images and we assume the impacts of such an assumption are the same for all techniques.
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Such assumptions may fail, however, at very low signals where Charge-coupled device (CCD) and shot noise dominates, or at high

signals, where processes such as non-linearity in CCD absorption become important.

Feature-based SNRs

Fundamentally, an SNR calculation of an image involves a calculation of the background level, the variation in this background level

(which is assumed to be due to noise) and the calculation of the difference between the ROI and this background. Detecting what

these regions are provides a challenge in EM data where images may not have clear background regions and where noise is contrib-

uted to through sample preparation.

In order to measure the SNR we assumed that in any given image, the structures of interest provide the majority of features above

the noise. That is, most structures present are biological in nature, rather than artifacts of sample preparation. Therefore with this

assumption, it can be further assumed that key-points detected by feature detection algorithmswill disproportionately fall on the ROI.

Given that cells and structures therein tend to be ‘blobby’ due to hydrostatic processes (Jiang and Sun, 2013), we used a blob-

detection algorithm (which compares areas of interest, cf. edge or corner detection) to identify areas of interest. We used the

SURF algorithm (Bay et al., 2008).

Following the above, the variation in intensity of an image, I, in the local region of many feature points is likely to be mostly due to

signal, and the variation in intensity nearby few (or no) feature points will be dominated by noise. The determination of such regions

was done by generating an array of equal size to the original image and for each element, setting it to one if there is a feature in the

corresponding element of the image. This array was then convolved with a Gaussian of width n, where nwas chosen to maximize the

SNR in a random selection of five images from each sample in an effort to avoid bias between samples.

To select a region dominated by noise we then shuffled this array before sorting it (to avoid biases in sorting algorithms) and took

the lowest point. We then blocked out a region 2n square and resorted the array nine more times (for a total of 10 selected regions),

forming the set of points plow. We likewise performed a selection for the points of maximum variation (phigh). See Figure S4B for an

illustration of the entire process.

To determine the level of noise, we first generated a copy of the image to which a three pixel median filter had been applied. We

then subtracted this median image from the original to generate a noise dominated image, I’. At each of the minimum feature points

(where noise is most dominant); the standard deviation of this image was taken over a three pixel square neighborhood. The level of

noise, N, was then calculated as the mean of these standard deviations, i.e.,

N=
�
s
�
I
0 ðplow ± 1Þ��: (1)
The background level of the image, B, was determined by taking
 the mean of these noise-dominated regions (again taking a mean

over the three pixel neighborhood), following on from the assumption of symmetric noise, giving

B= hhIðplow ± 1Þii: (2)
The level of signal was then taken to be the mean of the (absolute
) difference of the mean of these three pixel neighborhoods around

phigh, and the background. This resulted in the SNR being given by

S
�
N=

���I
�
phigh ± 1

	� B
�� �

N
: (3)
Asmost images lack large areas that consist of only resin, this simp
le background selection is not perfect. Therefore, the SNRs gener-

ated should be considered lower limits in most cases. We show the SNR as a function of the acquisition rate for a variety of EM tech-

niques in Figure 2G.

To validate the feature-based method, we examined the effect of varying resolutions and confirmed that SNR changed in the ex-

pectedmanner for the additive Gaussian noisemodel. The feature-basedmethodworks reasonably well when combining voxels pro-

ducing SNRs within 20% (1.5 dB) of the expected based on additive Gaussian noise (Figure S4C), although the ATUM-SEM data of

Kasthuri et al. (2015) increases by more than others, a possible sign of their voxels (3 3 3 nm in x-y) under-sampling biological fea-

tures. This method produces the expected increase when scaling down images producing equivalent normalized SNRs (Figure S4C).

Increasing the size of images also increases the SNR, but this is due to the generation of new pixels with similar values to old ones

inside the regions considered for noise due to the fact that creation of these new pixels functions as a pseudo-low pass filter. As

expected this measure reports larger SNR values when Gaussian blurring is applied (as noise is disproportionately removed when

a low pass filter is applied) (Figure S4C). In images generated by super resolution techniques therefore, this method may be inappro-

priate and should be modified to, for example, use distance based regions rather than pixel based regions.

Cell membrane SNR

Although the feature-based SNR measure avoids many human biases in the selection of regions used to calculate background and

signal levels, it unfortunately can often incorporate biological structure (our signal of interest) into these calculations.

We therefore introduced a complementary measure to compare the SNR of biological EM data and verified that the feature-based

SNR calculation is valid. At its heart, this is simply a comparison between the signal level at a cell membrane and the background

nearby, taken at multiple points within an image.
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This was achieved by a user creating a line inside a random 1003 100 pixel region which contains only resin and, ideally nearby, a

line which covers only a stained cell membrane. Pixels along these lines were considered to be background or signal, respectively.

After selection of a background and signal line within each region, another 100 3 100 pixel region was chosen, until 20 lines in total

(10 background lines, 10 signal lines) were selected, skipping a region if there was not a suitable location to select both.

The noise was considered to be the standard deviation of the pixel intensities across all background intensities, and the back-

ground level the mean. The signal value was considered to be a mean of the signal pixels.

We show an example of the selection process in Figure S4D. Signal-to-noise ratios found by this method (Figure S4E), were within

10% of those found via the feature-based method, suggesting the former may be used for a fast, bias-free comparison between

methods.

Quantification of Artifacts
In order to examine the quality of the dataset, an assessment of missing and degraded tiles was undertaken. Using the losslessly

compressed tiles, we examined each 1024 3 1024 pixel region from which the CATMAID image tile pyramid is built, and checked

if this region was first, present, and second, if it was degraded due to an artifact in the data. We plot the total number of tiles and

number of degraded tiles per section in Figure S5K. A section was considered to have missing tiles, if its tile count was 5% below

that of the median of the neighboring five sections on each side. Qualitatively, this was the threshold at which biology is noticeably

impacted and not arising due to a tighter ROI around the brain. Within the core region of the brain (sections 2000-6000), 3% of sec-

tions had tile loss above this threshold, with 1% of all sections having extensive tile loss exceeding 20%. In addition to these missing

tiles, a tile was considered degraded if the standard deviation of its grayscale histogram either exceeded 40, or was below 20 and had

a mean grayscale value below 50. These thresholds included small-scale precipitate, folds and intensity correction artifacts in the

former and large-scale precipitate errors in the latter. These degraded tiles comprised 0.5% of the entire dataset with 1% of sections

having over 5% of degraded tiles.

Analysis of Neuronal Geometry
Analysis of neuronal geometry was conducted using custom packages developed in R. We imported skeletons of EM-reconstructed

neurons from the CATMAID tracing environment using rcatmaid (https://github.com/jefferis/rcatmaid). Section thickness in

CATMAID was specified to be 35 nm; all analyses of skeleton geometry therefore use this value. For qualitative and quantitative com-

parison with skeletons of LM-reconstructed neurons, the skeletons of EM-reconstructed neurons were transformed into coordinate

spaces of various LM template brains using elmr based on landmark pairs defined with ELM (see Electron-Light Microscopy regis-

tration tools). The R NeuroAnatomy Toolbox package (nat, https://github.com/jefferis/nat) was used for geometric computations, 3D

visualization of both reconstructed neurons and surface models.

NBLAST search for PNs

The geometric search tool NBLAST (Costa et al., 2016) was used to aid identifications of PN subtypes (Table S1) by comparing

morphological similarity. NBLAST breaks neuron skeletons into segments and computes an NBLAST score based on a geometric

comparison of the segments of a given pair of neurons (a query neuron and a target neuron). NBLAST scores range from �1

(completely anticorrelated) to 1 (identical), but for practical purposes, 0 is a natural cutoff. A score of 0 means that the similarity level

for segment pairs are, on average, as likely to be from neurons of the same type as they are to be from a random pair of neurons in the

database. The EM-reconstructed PNs were transformed into the FlyCircuit template brain space for NBLAST neuron search against

the �400 LM-reconstructed PNs whose subtypes were previously classified (Chiang et al., 2011; Costa et al., 2016). This is enabled

by a single elmr function nblast_fafb. The search functionality is built on the nat.nblast package (https://github.com/jefferislab/nat.

nblast) and uses data distributed with the FlyCircuit package (https://github.com/jefferis/flycircuit), both of which are installed

with elmr. Only EM-reconstructed PNs whose candidate subtypes exist in the FlyCircuit dataset were used for NBLAST search.

The EM-reconstructed skeletons, which typically had many additional fine processes as compared to LM-reconstructed skeletons,

were used as the target neuron rather than the query neuron for geometric comparison, in reverse to the conventional NBLAST

option. NBLAST search of each EM-reconstructed PN returned the top five hits of LM-reconstructed neurons and their NBLAST

scores, which were tabulated to aid expert glomerular identification of PNs. For the VM2 example shown in Figures 3E–3G, the

top NBLAST score for the EM-reconstructed VM2 PN was compared with the top NBLAST scores from searching all LM-recon-

structed VM2 PNs against each other. Further details of the NBLAST neuron search, the associated LM data, and an online web-

app for on-the-fly NBLAST queries are available at http://jefferislab.org/si/nblast.

NBLAST clustering and PN dendrogram generation

Pairwise NBLAST scores were computed for all uniglomerular PNs (the nblast_allbyall function in the nat.nblast package at https://

github.com/jefferislab/nat.nblast) after transformation into the JFRC2 template brain (Jenett et al., 2012) space using elmr. We used

unsupervised hierarchical clustering with Ward’s method based on the NBLAST scores (nat function nhclust).

Renderings and analysis of PN arbors in MB calyx

Reconstructed PNs from two LM datasets, one from the FlyCircuit database (Chiang et al., 2011) and the other from Jefferis et al.

(2007), were previously registered to a common template brain (Costa et al., 2016), and were used for comparisons with EM-recon-

structed PNs reported here.We first determinedwhich PN subtypes hadmultiple EM- and LM-reconstructed neurons available. For a

few PN subtypes, we analyzed EM-reconstructed PNs although no LM reconstructions were available from the dataset, enabling
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comparison of a more complete set of PN subtypes within the EM modality. The DA3 subtype was excluded because the DA3 PNs

from the LM data do not extend collaterals into the MB calyx (Jefferis et al., 2007). For analysis, we then selected a random set of LM

skeletons so that we had the same number of LM and EM skeletons for each PN subtype.

For visualizations, LM-reconstructed PNs from the FlyCircuit database were used for Figure 5A, and LM-reconstructed PNs from

Jefferis et al. (2007) were used for Figure S7A. Linear interpolation of neighboring skeleton nodes was applied to EM-reconstructed

PNs to smooth artifactual spikes in neuron tracings due to registration errors. EM- and LM-reconstructed PNswere resampled with a

1 mm interval to ensure uniform representation of skeletons. For analysis, LM-reconstructed PNs from both the FlyCircuit database

and Jefferis et al. (2007) datasets were used. For both visualization and analysis, EM- and LM-reconstructed PNs were transformed

onto a common template brain (Costa et al., 2016; Jenett et al., 2012; Manton et al., 2014).

To obtain the subset of PN arbors ramifying in MB calyx for both visualization and analysis, a bounding box defined by the calyx

surface mesh (Ito et al., 2014; Manton et al., 2014; Milyaev et al., 2012) in the JFRC2 template brain was used to trim the skeletons of

EM- and LM-reconstructed PNs. For visualization in Figure 4C, the boutons of PNs (as defined in Tracing of PNs) in MB calyx were

isolated and used to generate bouton volumes by applying a Gaussian smoothing. For analysis of PN arbors in the MB calyx (Figures

5B, 5C, S7B, and S7C), the backbone of each PN was removed so that only the collaterals entering the calyx were included in geo-

metric measurements.

We computed geometric measurements (pairwise distance and NBLAST scores) for only the MB calyx arbors of EM- versus LM-

reconstructed homotypic PNs. For each PN subtype, pairwise distances quantified physical co-location of arbors and NBLAST

scores quantified morphological similarity for pairs of neurons. To calculate the pairwise distance, we iterated over each node of

a query neuron to find the nearest node in a target neuron, measured the Euclidean distances between each pair of nodes, and calcu-

lated the mean nearest distances for all nodes in the query neurons (forward distance). When a query neuron has significantly longer

arbors than a target neuron, large nearest distances can be introduced by end points in the query neuron’s arbors that are far away

from closest nodes of the target neuron’s arbors. To address this issue, we calculated the samemean nearest distancewith the query

neuron and target neuron in reverse (reverse distance) and picked only the smaller of the forward and reverse distances, which was

the pairwise distance. To quantify morphological similarity, NBLAST scores were computed for PN arbors in MB calyx in a similar

pairwise manner. The distribution of all pairwise distances and NBLAST scores of homotypic PNs were plotted, and for both mea-

surements the difference between EM and LM population data were analyzed with a Student’s t test.

DATA AND SOFTWARE AVAILABILITY

All files and videos are available through the following website: http://www.temca2data.org.

ADDITIONAL RESOURCES

Access to the full adult fly brain dataset is available at: http://www.temca2data.org.

Analysis code is available at: https://github.com/bocklab/temca2data.
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Supplemental Figures

Figure S1. Neuronal Architecture of the MB Calyx, Related to Figure 1

(A) Micrograph of a microglomerulus in MB calyx. A canonical olfactory PN bouton (pink) is presynaptic to several fine KC dendrites, forming a synaptic complex

referred to as a microglomerulus (Yasuyama et al., 2002). Arrows: presynaptic release sites.

(B) Schematic of microglomerular inputs to KCs in MB calyx of Drosophila. The PN axons extend collaterals from the mALT into the calyx and provide bouton

inputs to KCs. The Drosophila MB has �2,000 KCs on each side of the brain (Aso et al., 2014). Each KC projects a highly variable dendritic arbor into the calyx,

which terminates in elaborations known as claws. Claws frommany KCs wrap individual PN boutons to form each microglomerulus (Yasuyama et al., 2002), and

each KC receives input from multiple PNs of diverse types across its claws (Caron et al., 2013; Gruntman and Turner, 2013). The complete composition of cell

types that provide driving inputs via microglomeruli in the calyx is unknown. KCs have been shown to form presynaptic release sites in the calyx mostly outside of

claws (Butcher et al., 2012; Christiansen et al., 2011), but the complete set of postsynaptic partners is unknown.

Scale Bar: 1 mm in (A).



Figure S2. TEMCA2, Fast Stage, and ATPS for High-Throughput EM Imaging, Related to Figure 1

(A) A TEMCA2 equipped with a Fast Stage. Arrowheads: Fast Stage (black); elongated vacuum chamber (white); 2 3 2 camera array (red).

(B) Fast Stage Schematic. Upper, driven mass (left) and exterior view (right). Lower, cutaway of Fast Stage showing the locations of dampers, bearings, and

vacuum bellows. Arrows: rolling element damper locations (black arrows); rolling-element ‘tip’ bearing (white arrowhead); vacuum bellows (black arrowhead).

(C) Plot of Fast Stage motion over time following an 8 mm move. Top trace, vibration perpendicular to Fast Stage motion axis. Bottom trace, vibration along the

Fast Stage motion axis.

(D) Schematic of Fast Stage stepping pattern. Left, small-step/big-step schematic. Numbers indicate camera identity within the array. Right, CompuStage and

Fast Stage scanning axes. Red point is origin of scanning.

(E) ATPS (white arrowhead) mounted to an accessory port on an FEI Tecnai Spirit BioTWIN TEM.

(F) Schematic of the ATPS system diagraming motor positions and movement axes as well as vacuum and pneumatics subsystems.



Figure S3. Sample Preparation and EM Acquisition Infrastructure, Related to Figure 1

(A) Drosophila brain following en bloc staining.

(B) Frontal view of a 3D volumetric rendering of an X-ray tomogram from the embedded Drosophila brain.

(C) Sample support film test showing a failed result with wrinkling of the support film on a 3 mm grid with 2 3 1 mm slot.

(D) Sample support film test showing a successful result with no wrinkling or relaxation of the support film.

(E) Left, schematic of TEMCA2 vacuum extension, scintillator, and camera array. Right, camera diagram showing the non-overlapping FOV of each camera on the

scintillator.

(F) An FEI CompuStage-compatible single-axis Fast Stage.

(G) A Fast Stage grid holder.

(H) A 3 mm grid with a 2 3 1 mm slot, custom-etched fiducial marks, 2D barcodes, and unique serial identifier.

(I) Cassettes, magazine, and four-axis stage inside the ATPS vacuum.

(J) ATPS cassettes and magazines.

(K) Grid holder and end-effector of the ATPS grid positioning system. Arrows: prism and LED assembly (red); sample grid (black); lever of the grip assembly (white)

which actuates grid release.

(L) ATPS end-effector with LED lights for machine vision-guided pick-and-place.

(M) Four-axis ATPS stage. Arrows: transverse precision piezo-driven axis (blue); pitch-axis pivot point (red); grid positioning system shuttle piezo motor (black);

end effector and vision-system camera (white).

(N) Rotational aligner integrated into the ATPS cassette shuttle orients the grids for imaging.

Scale Bars: 250 mm in (A) and (B).



Figure S4. Comparison of SNR between EM Imaging Methods, Related to Figure 2

(A) Sample images from a variety of EM datasets acquired via different techniques. The data sources are as in Figure 2G. The top row shows images of side length

3 mm while the lower row shows 100 3 100 pixel subimages of each. Red squares indicate the areas of the subimages.

(B) From left to right, a TEMCA2 image, the key-points detected in the image, convolution of the key-points illustrating dense and sparse feature regions (purple –

low, yellow – high), the region of sparse features selected from the TEMCA2 image showing a resin filled area suitable for noise calculation.

(C) The normalized SNR versus acquisition rates of a variety of EM techniques are shown for different SNRmethods. Color code, points and data sources are as in

Figure 2G. From left to right, the feature-based method is as described in (B); for the stacked voxels method, voxels are combined across a layer (SBEM not

shown due to unclear alignments) and across 50 random images; for the reduced resolution method, voxels correspond to a larger physical size across 100

random images; for the scaled up resolution method, voxels correspond to a smaller physical size across 100 random images; for the Gaussian Blur method,

voxels have been blurred with a Gaussian filter across 100 random images. Error bars indicate SD.

(D) Cell membrane SNRmethod. Left, a representative image used to select two lines of pixels for quantifying signal (red line) and noise (green line), respectively.

The pixels used for signal quantificationwere selected from cell membranes, and pixels used for noise quantification were selected from areas that contained only

resin. Right, the grayscale values for signal (red) and noise (green) pixels selected in each region.

(E) Normalized SNR versus acquisition rates as determined via the cell membrane method across five random images from each technique, each of which had 10

regions of background/noise and signal determined. Color code, points, and data sources are as in Figure 2G. Error bars indicate SD.



Figure S5. Re-imaging Synapses in MB Pedunculus, Montaging, 2D Intensity Correction, and Assessment of Volume Quality, Related to

Figure 2

(A–C) Matching FOVs in section 3887 from the whole-brain volume (A) and re-imaged at higher resolution in (B-C). Resolutions in (A) and (B) and (C) are 4 nm/pixel

and 0.5 nm/pixel, respectively.

(D, G, and I) Whole-brain sections.

(D–F) Registration of images acquired with high-dose and low-dose current beams. Debris present on a section (red rectangle) necessitated collection of a small

subset of tiles at lower dose than the remainder of the mosaic. Red rectangle indicates the subregion displayed in (E).

(E) A higher magnification image of the debris and border of the low-dose mosaic indicated in (D).

(F) The boundary (arrowheads) in the joined high-dose and low-dose montage.

(G–J) Mosaic of the same section prior to (G-H) and after (I-J) 2D intensity correction. Red squares in (G) and (I) indicate the subregions shown in (H) and

(J), respectively. Intensity differences visible in (H) are greatly diminished in (J).

(K) Most sections have few lost or degraded tiles. Red line, the running median of the total number of tiles per section for an 11-section window (five either side).

For sections with lost tiles, only thosewith tile lossmore than 5%below themedian are shown. Triangles indicate complete loss of three consecutive sections. For

sections containing degraded tiles, only those with 100 or more tiles contaminated by artifacts are shown. The dense data points and the fluctuations of running

medians toward both ends of the series (sections before �1500 or after �5800) are due to tiles that contain extraneous tissue or resin outside the neuropil

compartment. The tile count per section (running medians) across the series is proportional to the cross-sectional area of the brain normal to the cutting direction

(z axis).

(legend continued on next page)



(L) Volume alignment quality is sufficient for neural reconstruction. Alignment quality was assessed by analyzing the section-by-section displacements of in-

dividual Gaussian-smoothed skeletons of reconstructed neurons (STAR Methods). Large displacements are generally indicative of section misalignments. Data

outside of a core region of the brain (sections < �500 and > �5500, shaded regions) are not informative since: 1) these regions mostly contain somata which

typically have larger diameters than neurites, resulting in increased variability of tracing node placements, and 2) not enough tracing exists outside this range. The

median and the 95% percentile of the displacements are 0.09 mm and the 0.57 mm, respectively.

Scale Bars: 200 nm in (A)–(C), 100 mm in (D), (G), and (I), 25 mm in (E), 1 mm in (F), 2 mm in (H) and (J).



Figure S6. Reproducibility of Tracing, Related to Figure 2

(A and B) Three teams (indicated by colors), each comprising one tracer and one proofreader, reconstructed the same KC, with each team blinded to the others.

(A) Morphologies are comparable across teams. Upper panel: asterisks indicate locations of a KC claw neurite postsynaptic to a PN input discovered by two out

of three teams. Zoom-ins show the discrepancy of the fine claw neurites. Lower panel: cable length of missed branches for each of the three teams compared to

an expert-generated gold-standard skeleton (STAR Methods). Consistent with Schneider-Mizell et al. (2016), the vast majority of our missed branches have a

cable length of fewer than 5 mm. The reconstructed KC dendrite spanned serial sections 3451-4899. This range included one 3-section loss (3595-3597), and four

single-section losses (3715, 4192, 4353, 4474), demonstrating the robustness of reproducible traceability to occasional data loss.

(B) Synaptic annotations are comparable across teams. The KC (gray circle) receives input (arrows) from seven PN boutons (pale orange circles). The number of

input synapses is indicated for each bouton, with the same team colors as in (A). All PN bouton inputs, except the rightmost one, were recapitulated by the three

teams. Red asterisks mark the discrepant inputs caused by the missed branches in (A).

Scale bars: �20 mm in (A), 250 nm in (A) inset.



Figure S7. Comparison of MB Calyx Collaterals Reveals Greater Similarity between EM-Reconstructed PNs than LM-Reconstructed PNs,

Related to Figure 5

(A) Pairs of EM-reconstructed PNs are qualitatively more similar than pairs of LM-reconstructed PNs in the MB calyx. Subtypes are ordered by how much more

clustered EM-reconstructed PNs are than LM-reconstructed PNs (STAR Methods). Middle column shows the pair of LM-reconstructed PNs with the median

pairwise distance across all pairs.

(B) Pairwise NBLAST scores between homotypic PN collaterals in the MB calyx. Each data point represents the NBLAST scores between one pair of EM- (red) or

LM-reconstructed (blue) PNs. Data points are bucketed according to PN subtype; subtypes are ordered on the x axis by how much more similar EM-re-

constructed PNs are than LM-reconstructed PNs (STAR Methods).

(C) Histogram of all data points in (B). The mean of pairwise NBLAST scores for all EM-reconstructed PN subtypes was significantly higher than that for all LM-

reconstructed PN subtypes (0.56 ± 0.18 versus 0.35 ± 0.21, respectively; Student’s t test, p < 2.2 3 10�12), indicating that EM-reconstructed PN subtypes are

morphologically more similar to each other than LM-reconstructed PN subtypes.

Scale bar: �10 mm in (A).
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