199 research outputs found

    Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya

    Get PDF
    Rock debris covers about 30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08–2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as –40°C m–1 where debris was up to 0.1 m thick, –20°C m–1 for debris 0.1–0.5 m thick, and –4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.Peer reviewe

    Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma

    Get PDF
    High-grade epithelial ovarian carcinomas (OC) containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pre-treatment and post-progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase 2 study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed OC. In six of 12 pre-treatment biopsies, a truncation mutation in BRCA1, RAD51C or RAD51D was identified. In five of six paired post-progression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft (PDX), as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations

    Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya

    Get PDF
    Rock debris covers about 30% of glacier ablation areas in the Central Himalaya and modifies the impact of atmospheric conditions on mass balance. The thermal properties of supraglacial debris are diurnally variable but remain poorly constrained for monsoon-influenced glaciers over the timescale of the ablation season. We measured vertical debris profile temperatures at 12 sites on four glaciers in the Everest region with debris thickness ranging from 0.08–2.8 m. Typically, the length of the ice ablation season beneath supraglacial debris was 160 days (15 May to 22 October)—a month longer than the monsoon season. Debris temperature gradients were approximately linear (r2 > 0.83), measured as –40°C m–1 where debris was up to 0.1 m thick, –20°C m–1 for debris 0.1–0.5 m thick, and –4°C m–1 for debris greater than 0.5 m thick. Our results demonstrate that the influence of supraglacial debris on the temperature of the underlying ice surface, and therefore melt, is stable at a seasonal timescale and can be estimated from near-surface temperature. These results have the potential to greatly improve the representation of ablation in calculations of debris-covered glacier mass balance and projections of their response to climate change.Peer reviewe

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Long-term responders on olaparib maintenance in high-grade serous ovarian cancer: Clinical and molecular characterization

    Get PDF
    Purpose: Maintenance therapy with olaparib has improved progression-free survival in women with high-grade serous ovarian cancer (HGSOC), particularly those harboring BRCA1/2 mutations. The objective of this study was to characterize long-term (LT) versus short-term (ST) responders to olaparib. Experimental Design: A comparative molecular analysis of Study 19 (NCT00753545), a randomized phase II trial assessing olaparib maintenance after response to platinum-based chemotherapy in HGSOC, was conducted. LT response was defined as response to olaparib/placebo > 2 years, ST as < 3 months. Molecular analyses included germline BRCA1/2 status, three-biomarker homologous recombination deficiency (HRD) score, BRCA1 methylation, and mutational profiling. Another olaparib maintenance study (Study 41; NCT01081951) was used as an additional cohort. Results: Thirty-seven LT (32 olaparib) and 61 ST (21 olaparib) patients were identified. Treatment was significantly associated with outcome (P < 0.0001), with more LT patients on olaparib (60.4%) than placebo (11.1%). LT sensitivity to olaparib correlated with complete response to chemotherapy (P < 0.05). In the olaparib LT group, 244 genetic alterations were detected, with TP53, BRCA1, and BRCA2 mutations being most common (90%, 25%, and 35%, respectively). BRCA2 mutations were enriched among the LT responders. BRCA methylation was not associated with response duration. High myriad HRD score (>42) and/or BRCA1/2 mutation was associated with LT response to olaparib. Study 41 confirmed the correlation of LT response with olaparib and BRCA1/2 mutation. Conclusions: Findings show that LT response to olaparib may be multifactorial and related to homologous recombination repair deficiency, particularly BRCA1/2 defects. The type of BRCA1/2 mutation warrants further investigation. (C) 2017 AACR

    The Contested Politics of Corporate Governance: The Case of the Global Reporting Initiative

    Get PDF
    The Global Reporting Initiative (GRI) has successfully become institutionalized as the preeminent global framework for voluntary corporate environmental and social reporting. Its success can be attributed to the “institutional entrepreneurs” who analyzed the reporting field and deployed discursive, material, and organizational strategies to change it. GRI has, however, fallen short of the aspirations of its founders to use disclosure to empower nongovernmental organizations (NGOs). The authors argue that its trajectory reflects the power relations between members of the field, their strategic choices and compromises, their ability to mobilize alliances and resources, and constraints imposed by the broader institutions of financial and capital markets. The authors draw three notable implications from this study. First, institutional theory needs to pay more attention to economic structures, strategies, and resources. Second, institutional entrepreneurship by relatively weak societal groups such as NGOs is inherently constrained by the structural power of wider institutions and by the compromises required to initiate change. Third, the strategies of NGOs represent a form of power capable of shifting, if not transforming, the field of corporate governance

    Therapeutic options for mucinous ovarian carcinoma

    Get PDF
    OBJECTIVE: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility

    Get PDF
    Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with kno
    • 

    corecore