112 research outputs found

    Human Endogenous Retrovirus (HERV) Transcriptome Is Dynamically Modulated during SARS-CoV-2 Infection and Allows Discrimination of COVID-19 Clinical Stages

    Get PDF
    SARS-CoV-2 infection is known to trigger an important inflammatory response, which has a major role in COVID-19 pathogenesis. In infectious and inflammatory contexts, the modulation of human endogenous retroviruses (HERV) has been broadly reported, being able to further sustain innate immune responses due to the expression of immunogenic viral transcripts, including double-stranded DNA (dsRNA), and eventually, immunogenic proteins. To gain insights on this poorly characterized interplay, we performed a high-throughput expression analysis of similar to 3,300 specific HERV loci in the peripheral blood mononuclear cells (PBMCs) of 10 healthy controls and 16 individuals being either convalescent after the infection (6) or retesting positive after convalescence (10) (Gene Expression Onmibus [GEO] data set ). Results showed that the exposure to SARS-CoV-2 infection modulates HERV expression according to the disease stage and reflecting COVID-19 immune signatures. The differential expression analysis between healthy control (HC) and COVID-19 patients allowed us to identify a total of 282 differentially expressed HERV loci (deHERV) in the individuals exposed to SARS-CoV-2 infection, independently from the clinical form. In addition, 278 and 60 deHERV loci that were specifically modulated in individuals convalescent after COVID19 infection (C) and patients that retested positive to SARS-CoV-2 after convalescence (RTP) as individually compared to HC, respectively, as well as 164 deHERV loci between C and RTP patients were identified. The identified HERV loci belonged to 36 different HERV groups, including members of all three classes. The present study provides an exhaustive picture of the HERV transcriptome in PBMCs and its dynamic variation in the presence of COVID-19, revealing specific modulation patterns according to the infection stage that can be relevant to the disease clinical manifestation and outcome.IMPORTANCE We report here the first high-throughput analysis of HERV loci expression along SARS-CoV-2 infection, as performed with peripheral blood mononuclear cells (PBMCs). Such cells are not directly infected by the virus but have a crucial role in the plethora of inflammatory and immune events that constitute a major hallmark of COVID-19 pathogenesis. Results provide a novel and exhaustive picture of HERV expression in PBMCs, revealing specific modulation patterns according to the disease condition and the concomitant immune activation. To our knowledge, this is the first set of deHERVs whose expression is dynamically modulated across COVID-19 stages, confirming a tight interplay between HERV and cellular immunity and revealing specific transcriptional signatures that can have an impact on the disease clinical manifestation and outcome

    Molecular characterization of a bladder pleomorphic rhabdomyosarcoma in an adult patient

    Get PDF
    Pleomorphic rhabdomyosarcoma (PRMS) is a rare but highly aggressive soft tissue tumor, accounting for 3% of soft tissue sarcomas. PRMS is the most frequent subtype of RMS in adulthood and it is mainly located in the large muscles of the extremities, particularly the lower limbs and the trunk, more rarely in other locations especially in the bladder. At our knowledge, only six cases of adult pleomorphic rhabdomyosarcoma of the bladder have been reported in the literature. In this study, we report a case of PRMS of bladder with a very poor prognosis. In fact, the patient died a month after surgery. The tumor was characterized by poorly differentiated, medium-sized sometimes rhabdoid cells, mixed with large-sized and pleomorphic elements with evident anisonucleosis, and with large areas of necrosis. We used an extensive immunohistochemical panel to exclude other tumors much more frequently reported at this site. The positivity for myogenic markers such as actin, desmin, myogenin and MyoD1 allowed the correct diagnosis. Furthermore, since preliminary studies highlighted a series of specific molecular alterations in PMRS cell lines, we analyzed a panel of specific mutations and gene rearrangements by RT-PCR and FISH methods. We showed a copy gains of CCND1 and MALT genes in our samples, suggesting an accurate molecular characterization of PRMS to establish a better management of patients and new therapeutic opportunities

    Antagonizing S1P3 receptor with Cell-Penetrating Pepducins in Skeletal Muscle Fibrosis

    Get PDF
    Bioactive lipids, derived from the metabolism of plasma membrane, are important mediators of cellular signaling in vertebrates. In recent years there has been a growing interest on sphingosine-1-phosphate (S1P) which is the final metabolite produced during the sequential degradation of plasma membrane glycosphingolipids and sphingomyelin. The S1P acts through five known subtypes of heptameric G-protein coupled receptors (GPCR), namely S1P1-S1P5 (S1PR). Recent evidence indicates that S1P signaling axis contributes to the development and maintenance of the fibrotic process [1]. Fibrosis is a pathological condition that can affect every organ, consequence of a persisting inflammatory and tissue remodeling condition. In different fibrotic models an extensive crosstalk between TGFβ and S1P signaling axis has been demonstrated. S1P3 plays a pivotal role in fibrosis development in different tissues such as skeletal muscle, liver, and kidney [2]. Thus, selective antagonists of the S1P3 receptor could be useful to deeply study its role in fibrosis as well as to develop new therapeutic entities to treat fibrotic diseases. Pepducins specifically target the intracellular loops, acting as allosteric modulators of GPCR activity. Using this approach, we have synthesized a pepducin based S1P3 antagonist namely KRX-725-II (Myristoyl-GRPYDAN-NH2) [3]. Here to improve the S1P1 vs S1P3 selectivity, we have synthesized several derivatives of KRX-725-II pointing our attention on the aromatic residue of the sequence, Tyr4, and with the aim to introduce molecular constraints. The new molecular entities have been evaluated for their selectivity profile by using mouse aortas. This screening allowed us to identify compounds V and VII (embodying respectively L- and D-Tic) as the most selective S1P3 antagonists. The selected compounds also displayed the ability to significantly reduce the profibrotic action of TGFβ1 in C2C12 myoblasts. To explain the higher selectivity observed for compounds V and VII, they were analyzed by Molecular Dynamics (MD) Simulations. The middle conformations of V and VII were compared by superimposing their GRP residues, which adopt a similar backbone orientation (see Figure). This revealed that the DAN residues with β-turn-like motif are located on opposite sides of the plane defined by the L- or D-Tic residue. This difference may explain, in structural terms, the selective S1P3 antagonism of V and VII in comparison to the unselective antagonist KRX-725-II, whose flexibility seems to be high enough for the adaptation to the binding regions of the individual receptor subtypes S1P1 and S1P3. Peptides V and VII possess, indeed, a highly constrained D- or L-Tic residue that hinder the pharmacophore from interacting properly with the binding pocket of the S1P1 receptor, therefore leading to S1P3 selectivity

    Biodegradable mulching spray for weed control in the cultivation of containerized ornamental shrubs

    Get PDF
    Abstract Background Weed control represents a major issue in plant cultivation in containers. Manual weed control is very expensive and the use of chemical herbicide or plastic mulch films has a large environmental impact. The aim of this study was to test the efficacy of an experimental biodegradable chitosan-based mulching spray in controlling weed growth in containers. This research also studied the effect of this mulch on the growth of Viburnum lucidum Mill. plants to test for possible phytotoxic effects. Results The study compared a total of six treatments derived from three types of weed control (no weed control; herbicide, oxadiazon; mulching spray) applied in containers either filled only with the sterile substrate or filled with the sterile substrate and then artificially inoculated with seeds of the weed species [Sonchus asper (L.) Hill subsp. asper and Epilobium montanum L.]. The mulch controlled the weeds effectively for more than 2 months after its application even under severe weed infestation. The mulching spray controlled the emergence of S. asper more efficiently than E. montanum plants, probably because the latter has a stronger capacity to penetrate the mulch film during emergence. Conclusions Three months after its application, the mulch started to degrade and this allowed some weeds to emerge in the containers, but, in general, the mulch performed better than the herbicide. The chitosan-based mulch did not have any negative effective on the growth of V. lucidum plants

    Full-length genome sequence of a dengue serotype 1 virus isolate from a traveler returning from Democratic Republic of Congo to Italy, July 2019.

    Get PDF
    Abstract We report the full-genome sequence of a Dengue serotype-1 virus (DENV-1) isolated from a traveller returning in July 2019 to Italy from Democratic Republic of Congo (DRC), which is currently affected by Ebola and measles outbreaks. The sequence shows high similarity with two 2013 strains isolated in Angola and China

    COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    Get PDF
    Abstract BACKGROUND: The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. METHODS: Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAFV600E A375 and NRASQ61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. RESULTS: BRAFV600E/V600K and NRASQ61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAFV600E A375 and NRASQ61R SK-MEL-2 melanoma cell lines. CONCLUSIONS: COX-2 expression correlates with and modulates PD-L1 expression in melanoma cells. These findings have clinical relevance since they provide a rationale to implement novel clinical trials to test COX-2 inhibition as a potential treatment to prevent melanoma progression and immune evasion as well as to enhance the anti-tumor activity of PD-1/PD-L1 based immunotherapy for the treatment of melanoma patients with or without BRAF/NRAS mutations

    Systematic versus on-demand early palliative care: results from a multicentre, randomised clinical trial

    Get PDF
    Background Early palliative care (EPC) in oncology has been shown to have a positive impact on clinical outcome, quality-of-care outcomes, and costs. However, the optimal way for activating EPC has yet to be defined. Methods This prospective, multicentre, randomised study was conducted on 207 outpatients with metastatic or locally advanced inoperable pancreatic cancer. Patients were randomised to receive ‘standard cancer care plus on-demand EPC’ (n = 100) or ‘standard cancer care plus systematic EPC’ (n = 107). Primary outcome was change in quality of life (QoL) evaluated through the Functional Assessment of Cancer Therapy – Hepatobiliary questionnaire between baseline (T0) and after 12 weeks (T1), in particular the integration of physical, functional, and Hepatic Cancer Subscale (HCS) combined in the Trial Outcome Index (TOI). Patient mood, survival, relatives' satisfaction with care, and indicators of aggressiveness of care were also evaluated. Findings The mean changes in TOI score and HCS score between T0 and T1 were −4.47 and −0.63, with a difference between groups of 3.83 (95% confidence interval [CI] 0.10–7.57) (p = 0.041), and −2.23 and 0.28 (difference between groups of 2.51, 95% CI 0.40–4.61, p = 0.013), in favour of interventional group. QoL scores at T1 of TOI scale and HCS were 84.4 versus 78.1 (p = 0.022) and 52.0 versus 48.2 (p = 0.008), respectively, for interventional and standard arm. Until February 2016, 143 (76.9%) of the 186 evaluable patients had died. There was no difference in overall survival between treatment arms. Interpretations Systematic EPC in advanced pancreatic cancer patients significantly improved QoL with respect to on-demand EPC

    Building the largest spectroscopic sample of ultra-compact massive galaxies with the Kilo Degree Survey

    Get PDF
    Ultra-compact massive galaxies UCMGs, i.e. galaxies with stellar masses M∗>8×1010M⊙M_{*} > 8 \times 10^{10} M_{\odot} and effective radii Re<1.5R_{e} < 1.5 kpc, are very rare systems, in particular at low and intermediate redshifts. Their origin as well as their number density across cosmic time are still under scrutiny, especially because of the paucity of spectroscopically confirmed samples. We have started a systematic census of UCMG candidates within the ESO Kilo Degree Survey, together with a large spectroscopic follow-up campaign to build the largest possible sample of confirmed UCMGs. This is the third paper of the series and the second based on the spectroscopic follow-up program. Here, we present photometrical and structural parameters of 33 new candidates at redshifts 0.15≲z≲0.50.15 \lesssim z \lesssim 0.5 and confirm 19 of them as UCMGs, based on their nominal spectroscopically inferred M∗M_{*} and ReR_{e}. This corresponds to a success rate of ∼58%\sim 58\%, nicely consistent with our previous findings. The addition of these 19 newly confirmed objects, allows us to fully assess the systematics on the system selection, and finally reduce the number density uncertainties. Moreover, putting together the results from our current and past observational campaigns and some literature data, we build the largest sample of UCMGs ever collected, comprising 92 spectroscopically confirmed objects at 0.1≲z≲0.50.1 \lesssim z \lesssim 0.5. This number raises to 116, allowing for a 3σ3\sigma tolerance on the M∗M_{*} and ReR_{e} thresholds for the UCMG definition. For all these galaxies we have estimated the velocity dispersion values at the effective radii which have been used to derive a preliminary mass-velocity dispersion correlation
    • …
    corecore