102 research outputs found

    ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging.

    Get PDF
    NF-κB is a transcription factor activated in response to inflammatory, genotoxic and oxidative stress and important for driving senescence and aging. Ataxia-telangiectasia mutated (ATM) kinase, a core component of DNA damage response signaling, activates NF-κB in response to genotoxic and oxidative stress via post-translational modifications. Here we demonstrate that ATM is activated in senescent cells in culture and murine tissues from Ercc1-deficient mouse models of accelerated aging, as well as naturally aged mice. Genetic and pharmacologic inhibition of ATM reduced activation of NF-κB and markers of senescence and the senescence-associated secretory phenotype (SASP) in senescent Ercc1-/- MEFs. Ercc1-/Δ mice heterozygous for Atm have reduced NF-κB activity and cellular senescence, improved function of muscle-derived stem/progenetor cells (MDSPCs) and extended healthspan with reduced age-related pathology especially age-related bone and intervertebral disc pathologies. In addition, treatment of Ercc1-/∆ mice with the ATM inhibitor KU-55933 suppressed markers of senescence and SASP. Taken together, these results demonstrate that the ATM kinase is a major mediator of DNA damage-induced, NF-κB-mediated cellular senescence, stem cell dysfunction and aging and thus represents a therapeutic target to slow the progression of aging

    Application and validation of the notch master curve in medium and high strength structural steels

    Get PDF
    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches

    RP1 Dominant p.Ser740* Pathogenic Variant in 20 Knowingly Unrelated Families Affected by Rod–Cone Dystrophy: Potential Founder Effect in Western Sicily

    Get PDF
    : Background and Objectives. Retinitis pigmentosa (RP) is the most common inherited rod-cone dystrophy (RCD), resulting in nyctalopia, progressive visual field, and visual acuity decay in the late stages. The autosomal dominant form (ADRP) accounts for about 20% of RPs. Among the over 30 genes found to date related to ADRP, RP1 pathogenic variants have been identified in 5-10% of cases. In a cohort of RCD patients from the Palermo province on the island of Sicily, we identified a prevalent nonsense variant in RP1, which was associated with ADRP. The objective of our study was to analyse the clinical and molecular data of this patient cohort and to evaluate the potential presence of a founder effect. Materials and Methods. From 2005 to January 2023, 84 probands originating from Western Sicily (Italy) with a diagnosis of RCD or RP and their relatives underwent deep phenotyping, which was performed in various Italian clinical institutions. Molecular characterisation of patients and familial segregation of pathogenic variants were carried out in different laboratories using Sanger and/or next-generation sequencing (NGS). Results. Among 84 probands with RCD/RP, we found 28 heterozygotes for the RP1 variant c.2219C>G, p.Ser740* ((NM_006269.2)*, which was therefore significantly prevalent in this patient cohort. After a careful interview process, we ascertained that some of these patients shared the same pedigree. Therefore, we were ultimately able to define 20 independent family groups with no traceable consanguinity. Lastly, analysis of clinical data showed, in our patients, that the p.Ser740* nonsense variant was often associated with a late-onset and relatively mild phenotype. Conclusions. The high prevalence of the p.Ser740* variant in ADRP patients from Western Sicily suggests the presence of a founder effect, which has useful implications for the molecular diagnosis of RCD in patients coming from this Italian region. This variant can be primarily searched for in RP-affected subjects displaying compatible modes of transmission and phenotypes, with an advantage in terms of the required costs and time for analysis. Moreover, given its high prevalence, the RP1 p.Ser740* variant could represent a potential candidate for the development of therapeutic strategies based on gene editing or translational read-through therapy for suppression of nonsense variants

    Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma.

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously

    Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA), a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM).</p> <p>Results</p> <p>While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K)-specific demethylase 5B) and HDACs (histone deacetylases), which could epigenetically coordinate gene expression after irradiation.</p> <p>Conclusions</p> <p>In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.</p

    Essential Functions of the Histone Demethylase Lid

    Get PDF
    Drosophila Little imaginal discs (Lid) is a recently described member of the JmjC domain class of histone demethylases that specifically targets trimethylated histone H3 lysine 4 (H3K4me3). To understand its biological function, we have utilized a series of Lid deletions and point mutations to assess the role that each domain plays in histone demethylation, in animal viability, and in cell growth mediated by the transcription factor dMyc. Strikingly, we find that lid mutants are rescued to adulthood by either wildtype or enzymatically inactive Lid expressed under the control of its endogenous promoter, demonstrating that Lid's demethylase activity is not essential for development. In contrast, ubiquitous expression of UAS-Lid transgenes lacking its JmjN, C-terminal PHD domain, and C5HC2 zinc finger were unable to rescue lid homozygous mutants, indicating that these domains carry out Lid's essential developmental functions. Although Lid-dependent demethylase activity is not essential, dynamic removal of H3K4me3 may still be an important component of development, as we have observed a genetic interaction between lid and another H3K4me3 demethylase, dKDM2. We also show that Lid's essential C-terminal PHD finger binds specifically to di- and trimethylated H3K4 and that this activity is required for Lid to function in dMyc-induced cell growth. Taken together, our findings highlight the importance of Lid function in the regulated removal and recognition of H3K4me3 during development

    The Histone Demethylase Jarid1b (Kdm5b) Is a Novel Component of the Rb Pathway and Associates with E2f-Target Genes in MEFs during Senescence

    Get PDF
    Senescence is a robust cell cycle arrest controlled by the p53 and Rb pathways that acts as an important barrier to tumorigenesis. Senescence is associated with profound alterations in gene expression, including stable suppression of E2f-target genes by heterochromatin formation. Some of these changes in chromatin composition are orchestrated by Rb. In complex with E2f, Rb recruits chromatin modifying enzymes to E2f target genes, leading to their transcriptional repression. To identify novel chromatin remodeling enzymes that specifically function in the Rb pathway, we used a functional genetic screening model for bypass of senescence in murine cells. We identified the H3K4-demethylase Jarid1b as novel component of the Rb pathway in this screening model. We find that depletion of Jarid1b phenocopies knockdown of Rb1 and that Jarid1b associates with E2f-target genes during cellular senescence. These results suggest a role for Jarid1b in Rb-mediated repression of cell cycle genes during senescence

    The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain

    Full text link
    [EN] Phytophthora is one of the most important and aggressive plant pathogenic genera in agriculture and forestry. Early detection and identification of its pathways of infection and spread are of high importance to minimize the threat they pose to natural ecosystems. eDNA was extracted from soil and water from forests and plantations in the north of Spain. Phytophthora-specific primers were adapted for use in high-throughput Sequencing (HTS). Primers were tested in a control reaction containing eight Phytophthora species and applied to water and soil eDNA samples from northern Spain. Different score coverage threshold values were tested for optimal Phytophthora species separation in a custom-curated database and in the control reaction. Clustering at 99% was the optimal criteria to separate most of the Phytophthora species. Multiple Molecular Operational Taxonomic Units (MOTUs) corresponding to 36 distinct Phytophthora species were amplified in the environmental samples. Pyrosequencing of amplicons from soil samples revealed low Phytophthora diversity (13 species) in comparison with the 35 species detected in water samples. Thirteen of the MOTUs detected in rivers and streams showed no close match to sequences in international sequence databases, revealing that eDNA pyrosequencing is a useful strategy to assess Phytophthora species diversity in natural ecosystems.This project has been supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (EUPHRESCO-CEP: "Current and Emerging Phytophthoras: Research Supporting Risk Assessment And Risk Management"). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Català, S.; Pérez Sierra, AM.; Abad Campos, P. (2015). The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain. PLoS ONE. 10(3):1-14. doi:10.1371/journal.pone.0119311S114103REICHARD, S. H., & WHITE, P. (2001). Horticulture as a Pathway of Invasive Plant Introductions in the United States. BioScience, 51(2), 103. doi:10.1641/0006-3568(2001)051[0103:haapoi]2.0.co;2Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. doi:10.1111/j.1365-3059.2008.01886.xTABERLET, P., COISSAC, E., HAJIBABAEI, M., & RIESEBERG, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793. doi:10.1111/j.1365-294x.2012.05542.xSogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., … Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored «rare biosphere». Proceedings of the National Academy of Sciences, 103(32), 12115-12120. doi:10.1073/pnas.0605127103Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., … Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1(4), 283-290. doi:10.1038/ismej.2007.53Acosta-Martínez, V., Dowd, S., Sun, Y., & Allen, V. (2008). Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, 40(11), 2762-2770. doi:10.1016/j.soilbio.2008.07.022Jumpponen, A., & Jones, K. L. (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperateQuercus macrocarpaphyllosphere. New Phytologist, 184(2), 438-448. doi:10.1111/j.1469-8137.2009.02990.xNilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97-101. doi:10.1111/j.1574-6968.2009.01618.xCoince, A., Caël, O., Bach, C., Lengellé, J., Cruaud, C., Gavory, F., … Buée, M. (2013). Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecology, 6(3), 223-235. doi:10.1016/j.funeco.2013.01.002Vannini, A., Bruni, N., Tomassini, A., Franceschini, S., & Vettraino, A. M. (2013). Pyrosequencing of environmental soil samples reveals biodiversity of thePhytophthoraresident community in chestnut forests. FEMS Microbiology Ecology, 85(3), 433-442. doi:10.1111/1574-6941.12132Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). «Sight-unseen» detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. doi:10.1111/j.1755-263x.2010.00158.xMonchy, S., Sanciu, G., Jobard, M., Rasconi, S., Gerphagnon, M., Chabé, M., … Sime-Ngando, T. (2011). Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environmental Microbiology, 13(6), 1433-1453. doi:10.1111/j.1462-2920.2011.02444.xJobard, M., Rasconi, S., Solinhac, L., Cauchie, H.-M., & Sime-Ngando, T. (2012). Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environmental Microbiology, 14(9), 2480-2494. doi:10.1111/j.1462-2920.2012.02771.xLivermore, J. A., & Mattes, T. E. (2013). Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environmental Microbiology, 15(8), 2333-2341. doi:10.1111/1462-2920.12106NAKAYAMA, J., JIANG, J., WATANABE, K., CHEN, K., NINXIN, H., MATSUDA, K., … LEE, Y.-K. (2013). Up to Species-level Community Analysis of Human Gut Microbiota by 16S rRNA Amplicon Pyrosequencing. Bioscience of Microbiota, Food and Health, 32(2), 69-76. doi:10.12938/bmfh.32.69CREER, S., & SINNIGER, F. (2012). Cosmopolitanism of microbial eukaryotes in the global deep seas. Molecular Ecology, 21(5), 1033-1035. doi:10.1111/j.1365-294x.2012.05437.xDavey, M. L., Heegaard, E., Halvorsen, R., Kauserud, H., & Ohlson, M. (2012). Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Molecular Ecology, 22(2), 368-383. doi:10.1111/mec.12122Weber, C. F., Vilgalys, R., & Kuske, C. R. (2013). Changes in Fungal Community Composition in Response to Elevated Atmospheric CO2 and Nitrogen Fertilization Varies with Soil Horizon. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00078Bergmark, L., Poulsen, P. H. B., Al-Soud, W. A., Norman, A., Hansen, L. H., & Sørensen, S. J. (2012). Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiology Letters, 333(1), 77-84. doi:10.1111/j.1574-6968.2012.02601.xLi, L., Abu Al-Soud, W., Bergmark, L., Riber, L., Hansen, L. H., Magid, J., & Sørensen, S. J. (2013). Investigating the Diversity of Pseudomonas spp. in Soil Using Culture Dependent and Independent Techniques. Current Microbiology, 67(4), 423-430. doi:10.1007/s00284-013-0382-xSCHENA, L., HUGHES, K. J. D., & COOKE, D. E. L. (2006). Detection and quantification ofPhytophthora ramorum,P. kernoviae,P. citricolaandP. quercinain symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7(5), 365-379. doi:10.1111/j.1364-3703.2006.00345.xTooley, P. W., Martin, F. N., Carras, M. M., & Frederick, R. D. (2006). Real-Time Fluorescent Polymerase Chain Reaction Detection ofPhytophthora ramorumandPhytophthora pseudosyringaeUsing Mitochondrial Gene Regions. Phytopathology, 96(4), 336-345. doi:10.1094/phyto-96-0336Pavón, C. F., Babadoost, M., & Lambert, K. N. (2008). Quantification of Phytophthora capsici Oospores in Soil by Sieving-Centrifugation and Real-Time Polymerase Chain Reaction. Plant Disease, 92(1), 143-149. doi:10.1094/pdis-92-1-0143Than, D. J., Hughes, K. J. D., Boonhan, N., Tomlinson, J. A., Woodhall, J. W., & Bellgard, S. E. (2013). A TaqMan real-time PCR assay for the detection ofPhytophthora‘taxon Agathis’ in soil, pathogen of Kauri in New Zealand. Forest Pathology, 43(4), 324-330. doi:10.1111/efp.12034Chen, W., Djama, Z. R., Coffey, M. D., Martin, F. N., Bilodeau, G. J., Radmer, L., … Lévesque, C. A. (2013). Membrane-Based Oligonucleotide Array Developed from Multiple Markers for the Detection of Many Phytophthora Species. Phytopathology, 103(1), 43-54. doi:10.1094/phyto-04-12-0092-rScibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88(3), 356-368. doi:10.1016/j.mimet.2011.12.012Català S, Pérez-Sierra A, Berbegal M, Abad-Campos P. First approach into the knowledge of the Phytophthora species diversity in Mediterranean holm oak forests based on 454 parallel amplicon pyrosequencing of soil samples. Phytophthora in Forest and Natural Ecosystems 6th International IUFRO Working Party 7.02.09 Meeting, Córdoba, Spain, pp 34; 2012.Català S, Pérez-Sierra A, Beltrán A, Abad-Campos P. Next Generation Sequencing shows Phytophthora species diversity in soil samples of Macaronesian laurel forests from the Canary Islands. Phytophthora in Forest and Natural Ecosystems 6th International IUFRO Working Party 7.02.09 Meeting, Córdoba, Spain, pp. 86; 2012.Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genetics and Biology, 30(1), 17-32. doi:10.1006/fgbi.2000.1202Andrews S. FastQC: a quality control tool for high throughput sequence data. Available: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/Chou, H.-H., & Holmes, M. H. (2001). DNA sequence quality trimming and vector removal. Bioinformatics, 17(12), 1093-1104. doi:10.1093/bioinformatics/17.12.1093Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 27(2), 221-224. doi:10.1093/molbev/msp259Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y.-H., Blair, J. E., … Kang, S. (2008). Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Disease, 92(6), 966-972. doi:10.1094/pdis-92-6-0966Vettraino, A. M., Bonants, P., Tomassini, A., Bruni, N., & Vannini, A. (2012). Pyrosequencing as a tool for the detection ofPhytophthoraspecies: error rate and risk of false Molecular Operational Taxonomic Units. Letters in Applied Microbiology, 55(5), 390-396. doi:10.1111/j.1472-765x.2012.03310.xJung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia - Molecular Phylogeny and Evolution of Fungi, 22(1), 95-110. doi:10.3767/003158509x442612Deagle, B. E., Eveson, J. P., & Jarman, S. N. (2006). Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Frontiers in Zoology, 3(1). doi:10.1186/1742-9994-3-11Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE, 6(8), e23398. doi:10.1371/journal.pone.0023398Guha Roy S, Grunwald NJ. The plant destroyer genus Phytophthora in the 21st century. In book: Review of Plant Pathology, Edition: Volume 6, Publisher: Scientific Publishers (India), Jodhpur, Editors: B.N.Chakraborty, B.B.L.Thakore, pp. In press; 2014.Brasier, C. M., Cooke, D. E. L., Duncan, J. M., & Hansen, E. M. (2003). Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycological Research, 107(3), 277-290. doi:10.1017/s095375620300738xHüberli, D., Hardy, G. E. S. J., White, D., Williams, N., & Burgess, T. I. (2013). Fishing for Phytophthora from Western Australia’s waterways: a distribution and diversity survey. Australasian Plant Pathology, 42(3), 251-260. doi:10.1007/s13313-012-0195-6Jung, T., Stukely, M. J. C., Hardy, G. E. S. J., White, D., Paap, T., Dunstan, W. A., & Burgess, T. I. (2011). Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia - Molecular Phylogeny and Evolution of Fungi, 26(1), 13-39. doi:10.3767/003158511x557577Brasier, C. M., Sanchez-Hernandez, E., & Kirk, S. A. (2003). Phytophthora inundata sp. nov., a part heterothallic pathogen of trees and shrubs in wet or flooded soils. Mycological Research, 107(4), 477-484. doi:10.1017/s0953756203007548Hansen, E. M., Reeser, P. W., & Sutton, W. (2012). PhytophthoraBeyond Agriculture. Annual Review of Phytopathology, 50(1), 359-378. doi:10.1146/annurev-phyto-081211-172946Reeser, P. W., Sutton, W., Hansen, E. M., Remigi, P., & Adams, G. C. (2011). Phytophthora species in forest streams in Oregon and Alaska. Mycologia, 103(1), 22-35. doi:10.3852/10-013Nechwatal, J., Bakonyi, J., Cacciola, S. O., Cooke, D. E. L., Jung, T., Nagy, Z. Á., … Brasier, C. M. (2012). The morphology, behaviour and molecular phylogeny ofPhytophthorataxon Salixsoil and its redesignation asPhytophthora lacustrissp. nov. Plant Pathology, 62(2), 355-369. doi:10.1111/j.1365-3059.2012.02638.xHuai, W. -x., Tian, G., Hansen, E. M., Zhao, W. -x., Goheen, E. M., Grünwald, N. J., & Cheng, C. (2013). Identification ofPhytophthoraspecies baited and isolated from forest soil and streams in northwestern Yunnan province, China. Forest Pathology, 43(2), 87-103. doi:10.1111/efp.12015Oh, E., Gryzenhout, M., Wingfield, B. D., Wingfield, M. J., & Burgess, T. I. (2013). Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus, 4(1), 123-131. doi:10.5598/imafungus.2013.04.01.1
    corecore