42 research outputs found

    Oncometabolites: Unconventional triggers of oncogenic signalling cascades.

    Get PDF
    Cancer is a complex and heterogeneous disease thought to be caused by multiple genetic lesions. The recent finding that enzymes of the tricarboxylic acid (TCA) cycle are mutated in cancer rekindled the hypothesis that altered metabolism might also have a role in cellular transformation. Attempts to link mitochondrial dysfunction to cancer uncovered the unexpected role of small molecule metabolites, now known as oncometabolites, in tumorigenesis. In this review, we describe how oncometabolites can contribute to tumorigenesis. We propose that lesions of oncogenes and tumour suppressors are only one of the possible routes to tumorigenesis, which include accumulation of oncometabolites triggered by environmental cues.MS and CF are funded by an MRC Core Funding to the MRC Cancer Unit.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.02

    Two parallel pathways connect glutamine metabolism and mTORC1 activity to regulate glutamoptosis

    Get PDF
    Glutamoptosis is the induction of apoptotic cell death as a consequence of the aberrant activation of glutaminolysis and mTORC1 signaling during nutritional imbalance in proliferating cells. The role of the bioenergetic sensor AMPK during glutamoptosis is not defined yet. Here, we show that AMPK reactivation blocks both the glutamine-dependent activation of mTORC1 and glutamoptosis in vitro and in vivo. We also show that glutamine is used for asparagine synthesis and the GABA shunt to produce ATP and to inhibit AMPK, independently of glutaminolysis. Overall, our results indicate that glutamine metabolism is connected with mTORC1 activation through two parallel pathways: an acute alpha-ketoglutarate-dependent pathway; and a secondary ATP/AMPK-dependent pathway. This dual metabolic connection between glutamine and mTORC1 must be considered for the future design of therapeutic strategies to prevent cell growth in diseases such as cancer.Unión Europea(PGC2018-096244- B-I00, SAF2016-75442-R

    Post-translational regulation of metabolism in fumarate hydratase deficient cancer cells.

    Get PDF
    Deregulated signal transduction and energy metabolism are hallmarks of cancer and both play a fundamental role in tumorigenesis. While it is increasingly recognised that signalling and metabolism are highly interconnected, the underpinning mechanisms of their co-regulation are still largely unknown. Here we designed and acquired proteomics, phosphoproteomics, and metabolomics experiments in fumarate hydratase (FH) deficient cells and developed a computational modelling approach to identify putative regulatory phosphorylation-sites of metabolic enzymes. We identified previously reported functionally relevant phosphosites and potentially novel regulatory residues in enzymes of the central carbon metabolism. In particular, we showed that pyruvate dehydrogenase (PDHA1) enzymatic activity is inhibited by increased phosphorylation in FH-deficient cells, restricting carbon entry from glucose to the tricarboxylic acid cycle. Moreover, we confirmed PDHA1 phosphorylation in human FH-deficient tumours. Our work provides a novel approach to investigate how post-translational modifications of enzymes regulate metabolism and could have important implications for understanding the metabolic transformation of FH-deficient cancers with potential clinical applications

    Use of high-sensitivity cardiac troponins in the emergency department for the early rule-in and rule-out of acute myocardial infarction without persistent ST-segment elevation (NSTEMI) in Italy

    Get PDF
    : Serial measurements of cardiac troponin are recommended by international guidelines to diagnose myocardial infarction (MI) since 2000. However, some relevant differences exist between the three different international guidelines published between 2020 and 2021 for the management of patients with chest pain and no ST-segment elevation. In particular, there is no agreement on the cut-offs or absolute change values to diagnose non-ST-segment elevation MI (NSTEMI). Other controversial issues concern the diagnostic accuracy and cost-effectiveness of cut-off values for the most rapid algorithms (0 h/1 h or 0 h/2 h) to rule-in and rule-out NSTEMI. Finally, another important point is the possible differences between demographic and clinical characteristics of patients enrolled in multicenter trials compared to those routinely admitted to the Emergency Department in Italy. The Study Group of Cardiac Biomarkers, supported by the Italian Scientific Societies SocietaÌ€ Italiana di Biochimica Clinica, Italian Society of the European Ligand Assay Society, and SocietaÌ€ Italiana di Patolgia Clinica e Medicina di Laboratorio decided to revise the document previously published in 2013 about the management of patients with suspected NSTEMI, and to provide some suggestions for the use of these biomarkers in clinical practice, with a particular focus on the Italian setting

    Fumarate Hydratase Loss Causes Combined Respiratory Chain Defects.

    Get PDF
    Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid (TCA) cycle mutated in hereditary and sporadic cancers. Despite recent advances in understanding its role in tumorigenesis, the effects of FH loss on mitochondrial metabolism are still unclear. Here, we used mouse and human cell lines to assess mitochondrial function of FH-deficient cells. We found that human and mouse FH-deficient cells exhibit decreased respiration, accompanied by a varying degree of dysfunction of respiratory chain (RC) complex I and II. Moreover, we show that fumarate induces succination of key components of the iron-sulfur cluster biogenesis family of proteins, leading to defects in the biogenesis of iron-sulfur clusters that affect complex I function. We also demonstrate that suppression of complex II activity is caused by product inhibition due to fumarate accumulation. Overall, our work provides evidence that the loss of a single TCA cycle enzyme is sufficient to cause combined RC activity dysfunction

    Two parallel pathways connect glutamine metabolism and mTORC1 activity to regulate glutamoptosis.

    Get PDF
    Glutamoptosis is the induction of apoptotic cell death as a consequence of the aberrant activation of glutaminolysis and mTORC1 signaling during nutritional imbalance in proliferating cells. The role of the bioenergetic sensor AMPK during glutamoptosis is not defined yet. Here, we show that AMPK reactivation blocks both the glutamine-dependent activation of mTORC1 and glutamoptosis in vitro and in vivo. We also show that glutamine is used for asparagine synthesis and the GABA shunt to produce ATP and to inhibit AMPK, independently of glutaminolysis. Overall, our results indicate that glutamine metabolism is connected with mTORC1 activation through two parallel pathways: an acute alpha-ketoglutarate-dependent pathway; and a secondary ATP/AMPK-dependent pathway. This dual metabolic connection between glutamine and mTORC1 must be considered for the future design of therapeutic strategies to prevent cell growth in diseases such as cancer.This work was supported by funds from the following institutions: Agencia Estatal de Investigación/European Regional Development Fund, European Union (PGC2018-096244- B-I00, SAF2016-75442-R), Ministry of Science, Innovation and Universities of Spain, Spanish National Research Council—CSIC, Institut National de la Santé et de la Recherche Médicale —INSERM, Université de Bordeaux, Fondation pour la Recherche Médicale, the Conseil Régional d’Aquitaine, SIRIC-BRIO, Fondation ARC, and Institut Européen de Chimie et Biologie. C.B. was recipient of fellowships from the Minister of Higher Education, Research and Innovation (France) and the Fondation ARC (France). We thank Prof. Patricia Boya (Centro de Investigaciones Biologicas, Madrid, Spain) for kindly providing with the ATG5+/+ and ATG5−/− MEFs. We thank Prof. Benoit Viollet (Institute Cochin, Paris, France) for kindly providing with the AMPK+/+ and AMPK−/− MEFs, and the CA-AMPK plasmid

    Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses.

    Get PDF
    Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies

    Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.Peer reviewe
    corecore