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A B S T R A C T

Deregulated signal transduction and energy metabolism are hallmarks of cancer and both play a fundamental
role in tumorigenesis. While it is increasingly recognised that signalling and metabolism are highly inter-
connected, the underpinning mechanisms of their co-regulation are still largely unknown. Here we designed and
acquired proteomics, phosphoproteomics, and metabolomics experiments in fumarate hydratase (FH) deficient
cells and developed a computational modelling approach to identify putative regulatory phosphorylation-sites of
metabolic enzymes. We identified previously reported functionally relevant phosphosites and potentially novel
regulatory residues in enzymes of the central carbon metabolism. In particular, we showed that pyruvate de-
hydrogenase (PDHA1) enzymatic activity is inhibited by increased phosphorylation in FH-deficient cells, re-
stricting carbon entry from glucose to the tricarboxylic acid cycle. Moreover, we confirmed PDHA1 phosphor-
ylation in human FH-deficient tumours. Our work provides a novel approach to investigate how post-
translational modifications of enzymes regulate metabolism and could have important implications for under-
standing the metabolic transformation of FH-deficient cancers with potential clinical applications.

1. Introduction

Cancer is thought to arise from an abnormal accumulation of so-
matic mutations in the genome that drive complex and profound al-
terations of the cellular phenotype (Stratton et al., 2009). Among these
changes, dysregulated energy metabolism is gaining importance as a
hallmark of cancer (Hanahan and Weinberg, 2011). Although some
recent work elucidated the genetic underpinning of these metabolic
changes (Gaude and Frezza, 2016; Hu et al., 2013), whether cancer
metabolism is tuned via post-translational changes is still largely un-
known. In yeast, several studies have shown that signalling has a broad
importance in regulating the activity of metabolic enzymes involved in
central carbon metabolism and other peripheral pathways (Gonçalves
et al., 2017; Oliveira et al., 2015; Raguz Nakic et al., 2016). By contrast,
regulatory phosphorylation of metabolic enzymes in human cells

remains largely uncharacterised.
A particularly well-studied metabolic alteration in cancer is driven

by mutations of the metabolic enzyme fumarate hydratase (FH). These
mutations cause Hereditary Leiomyomatosis and Renal Cell Cancer
(HLRCC) tumours, a cancer syndrome characterised by benign tumours
of the skin and uterus, and a very severe and aggressive form of renal
cancer (Tomlinson et al., 2002). FH catalyses the conversion of fuma-
rate to malate, a metabolic reaction that takes part in the tricarboxylic
acid cycle (TCA cycle). FH mutations lead to the impairment of the
catalytic activity of the enzyme and thereby to the accumulation of its
substrate, fumarate, and consequently to profound metabolic changes
that we and others have extensively characterised (Isaacs et al., 2005;
Sciacovelli et al., 2016; Tomlinson et al., 2002). Yet, how these meta-
bolic changes are orchestrated by signalling processes has not been
investigated.
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Here, we performed an integrative analysis to investigate at a
genome-scale level the regulatory interactions between metabolism and
signalling using cell lines derived from an HLRCC tumor, UOK262, and
the FH reconstituted counterpart, UOK262pFH, which we previously
generated (Frezza et al., 2011). In particular, we characterised signal-
ling and metabolic changes in HLRCC cell lines by designing and

acquiring phosphoproteomics, proteomics and metabolomics measure-
ments (Fig. 1). These data-sets allowed us to study the molecular
adaptations of signalling and metabolism driven by the loss-of-function
of FH in HLRCC using a computational framework that integrates
phosphoproteomics with in silico estimated metabolic flux rates. Pairing
the metabolomics modelling with phosphoproteomics measurements

Fig. 1. Molecular characterisation of HLRCC derived UOK262 and UOK262pFH cell lines. A) Diagram depicting the potential molecular implication of fumarate hydratase deletion in the
proteome and phosphoproteome and subsequent regulatory implications in metabolism. B) Differential phosphoproteomics analysis. C) Consumption and release (CORE) metabolomics
experiments quantifying exchange rates (mmol/gDW/h). All the metabolite rates shown are significantly different (FDR<5%) between UOK262 and UOK262pFH cells.
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allowed us to identify putative-regulatory phosphorylation-sites in
metabolic enzymes involved, mostly, in the central carbon metabolism.
Notably, we experimentally validated that phosphorylation of pyruvate
dehydrogenase E1 component subunit alpha (PDHA1) regulates glucose
fluxes into the TCA cycle in FH-deficient cells. In summary, we present
a novel computational and experimental approach to systematically
identify putative regulatory phosphorylation-sites in metabolic en-
zymes. This approach could reveal novel regulatory networks in the
metabolic transformation of cancer, with important implications for
cancer therapy.

2. Results

2.1. Characterisation of the phosphoproteome of human FH-deficient cells

We started our investigation by comparing the proteome of human
FH-deficient UOK262 cells and their FH-complemented counterpart,
which we previously generated (Frezza et al., 2011; Sciacovelli et al.,
2016) (see Methods). Proteomics experiment covered a total of 1468
unique proteins (Supplementary Table 1) and, in agreement with FH
mutation, FH was underexpressed in UOK262 cell lines. Reproducibility
of the measurements was assessed with unsupervised hierarchical
clustering where replicates showed higher correlation coefficients than
all the pairwise comparisons (Supplementary Fig. 1). Proteomics
showed agreement with the RNA-seq transcriptomics measurements
available for the same cell lines (spearman's rho (r) of 0.43, p-value =
1.7e−63) (Sciacovelli et al., 2016) (Supplementary Fig. 2A). Some
proteins displayed a disagreement between the protein abundance and
the transcript expression, reflecting different types of regulatory me-
chanisms occurring at post-transcriptional and post-translational levels,
consistent with previous reports (Sciacovelli et al., 2016).

To study post-translational modifications by phosphorylation we
characterised the phosphoproteome of these cell lines. In total, we
measured 1360 unique single phosphorylated phosphosites, mapping to
812 unique proteins (Fig. 1B) (Supplementary Table 1). Similarly, to
the proteomics measurements, VIM also showed a significant increase
in phosphorylation in the UOK262 cell lines, although these changes
are associated with the increase in protein abundance. Metabolic en-
zymes displayed significant changes between UOK262 and
UOK262pFH, in particular PDHA1 and GAPDH (Fig. 1B). Specifically,
56% (23/41) of the phosphosites in metabolic enzymes display sig-
nificant changes (FDR<5%) (Table 1). This supports the idea that
metabolic enzymes are regulated by phosphorylation in FH-deficient
UOK262 cell lines.

2.2. Genome-scale metabolic modelling

To investigate how phosphorylation of metabolic enzymes could
regulate metabolism, we computed the intracellular metabolic fluxes of
FH-deficient cells using genome-scale reconstruction of human meta-
bolism (Duarte et al., 2007; Swainston et al., 2016; Thiele et al., 2013).
To this end, we capitalised on a recently generated version of the
human genome-scale metabolic model (Swainston et al., 2016) and
constrained it using consumption/release (CORE) measurements
(Fig. 1C), growth rates (Supplementary Table 1), and the FH loss status,
to generate specific models for UOK262 and UOK262pFH cell lines
separately (Fig. 2A) (see Methods). In particular, FH loss in UOK262
cells was modelled by limiting the flux rate of its catalysed reactions to
zero, while in the UOK262pFH cells they remained unaltered. CORE
rates were measured using liquid chromatography mass spectrometry
analysis of spent media (Fig. 1C) (Supplementary Table 1). An un-
supervised hierarchical clustering showed that UOK262 and
UOK262pFH CORE rates clustered separately (Supplementary Fig. 1).
UOK262 cells displayed increased lactate secretion (Fig. 1C), and, while
not significant at an FDR 5% (FDR<10%), they also showed increase
of glucose consumption (Supplementary Table 1), in line with aerobic

glycolysis in FH-deficient cells (Frezza et al., 2011).
Parsimonious FBA (pFBA) (Lewis et al., 2010) was then used to si-

mulate the two metabolic models using ATP production as the objective
function (Supplementary Table 2). ATP production was represented by
the ATP maintenance reaction (ATPM) (see Methods). UOK262 cells
showed decreased biomass yield, suggesting that the impairment of the
mitochondrial function by FH mutation and the increased levels of
glucose intake does not lead to augmented growth rate (Fig. 2B). The
maximisation of the ATPM predicted increased levels of energy pro-
duction of UOK262 cells (Fig. 2C). Of note, the total amount of ATP
production in UOK262 was greater than what would be expected by
glucose uptake alone, suggesting that other carbon sources are utilised
by these cells. This is supported by the measured increased uptake of
glutamine.

Glycolytic reactions displayed increased fluxes and increased levels
of lactate secretion in UOK262 cells (Fig. 2D), in line with previous
observations (Frezza et al., 2011). Interestingly, the models also cap-
tured the impaired mitochondrial activity of UOK262 cells. Pyruvate
dehydrogenase (PDHm) reaction shows decreased intake of pyruvate
into the mitochondria and FH inactivation leads to decreased metabolic
activity of several reactions in the TCA cycle, e.g. MDHm, SUCD1m.
While these models do not account for intracellular accumulation and
depletion of metabolites, these results are in line with the accumulation
of fumarate, succinate, and succinyl-coa, as aKGDm displays consistent
activity. Of note, increase of fumarate is a biochemical feature of FH-
deficient cells (Frezza et al., 2011). In summary, these models re-
capitulate several known metabolic phenotypes of these cell lines and
therefore offer the possibility to explore at a genome-scale level the
metabolic adaptations of UOK262 to the reactivation of FH.

2.3. Post-translational and post-transcriptional regulation of metabolism

Having evaluated the predictive capacity of the metabolic models,
we then used the in silico metabolic fluxes together with the proteomics
and phosphoproteomics data-sets to explore potential regulatory me-
chanisms of metabolism. An exploratory enrichment analysis
(Subramanian et al., 2005) of the proteomics revealed several Gene
Ontology (GO) terms (The Gene Ontology Consortium, 2015) sig-
nificantly enriched in these cells (Fig. 3A) (Supplementary Table 2). In
particular, processes involving cellular filament and cytoskeleton were
identified to be significantly up-regulated in UOK262. This result is

Table 1
Metabolic enzymes differentially phosphorylated sites.

Enzyme Phosphosite Fold-change p-value FDR

GAPDH S83 − 0.93 7.9E−05 9.3E−04
HMGCS1 S495 − 0.81 7.3E−07 3.3E−05
CTPS1 S575 − 0.70 1.4E−04 1.4E−03
MTMR3 S613 − 0.52 5.8E−05 7.2E−04
CTPS1 S574 − 0.47 4.5E−05 6.2E−04
PGK1 S203 − 0.40 5.2E−05 6.7E−04
DPYSL3 T509 − 0.39 5.5E−05 6.9E−04
PGM1 S117 − 0.39 1.8E−04 1.6E−03
IMPDH1 S160 − 0.37 3.3E−03 1.3E−02
IMPDH2 S160 − 0.37 3.3E−03 1.3E−02
PIK3C2A S884 − 0.36 5.2E−04 3.4E−03
DPYSL3 S522 − 0.36 8.1E−05 9.3E−04
PI4KB S428 − 0.34 4.4E−04 3.0E−03
PGM3 T62 − 0.16 7.9E−03 2.6E−02
PCYT1A S315 0.37 1.9E−04 1.7E−03
PCYT1B S315 0.37 1.9E−04 1.7E−03
BCKDHA S347 0.41 1.5E−03 7.6E−03
NAA10 S205 0.46 4.3E−03 1.6E−02
RRM2 S20 0.47 1.8E−04 1.6E−03
GUCY1B2 S150 0.52 4.4E−03 1.6E−02
PDHA1 S232 0.52 9.8E−06 2.3E−04
CMPK1 S180 0.67 7.4E−03 2.5E−02
BCKDHA S337 0.73 2.5E−03 1.1E−02
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Fig. 2. Genome-scale metabolic modelling of UOK262 cell lines. A) Diagram depicting the different constraints used in Recon 2.2 to obtain the condition-specific, UOK262 and
UOK262pFH, metabolic models. B) Biomass yield per mol of glucose intake calculated from experimental measurements. C) Maximum ATP production of both models. D) Flux dis-
tributions of glycolysis and TCA cycle pathways reactions estimated by maximising ATP production using pFBA.

Fig. 3. Post-translational regulation of metabolism in FH-deficient cells. A) Top significantly enriched GO terms found in the proteomics data-set (UOK262 - UOK262pFH). Red back-
ground denotes GO terms that are down-regulated and blue background denotes up-regulated. MF: molecular function; CC: cellular component; BP: biological process. B) Correlation
between proteomics and phosphoproteomics measurements. C) Phosphorylation-sites located in metabolic enzymes for which the protein abundance is either not changing significantly
or it was not measured. D) List of putative regulatory phosphorylation-sites in metabolic enzymes. Candidates were selected from C) and sorted by the metabolic flux change (flux delta).
The top 5 absolute metabolic flux changes are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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consistent with the increased motility of UOK262 cells, which has also
been associated with epithelial to mesenchymal transition (EMT)
(Sciacovelli et al., 2016). Several GO terms related with mitochondrial
processes, such as respiratory chain complexes, were down-regulated,
consistently with the metabolic model predictions and previously ob-
served decreased mitochondrial activity (Sciacovelli et al., 2016,
Tyrakis et al. 2017). We then assessed if changes in protein abundance
of metabolic enzymes could be related with metabolic flux changes
predicted by the model (Supplementary Fig. 2B). Correlation analysis
showed no significant relationship (Spearman's r = 0.12, p-value =
5.21e−01), suggesting that enzyme abundance is insufficient to de-
termine metabolic fluxes, which is consistent with the limited success of
previous approaches to interpret metabolism using transcriptomics and
proteomics data (Machado and Herrgård, 2014). Nevertheless, several
metabolic pathways displayed a consistent profile at protein and flux
level, for example TCA cycle decreased protein abundance and de-
creased metabolic flux in UOK262. Intriguingly, glutamate metabolism
shows an increase in the abundance of metabolic enzymes and decrease
in metabolic flux of the whole pathway in UOK262 (Supplementary
Fig. 2B), which was not in agreement with the measured increase in
glutamate secretion and glutamine intake (Fig. 1C). We validated this
unexpected finding performing a separate 13C-glutamine labelling ex-
periment and found that indeed, whilst these cells do not accumulate
glutamate (Zheng et al., 2013), they release glutamate in a time-de-
pendent fashion, and glutamate is predominantly generated by gluta-
mine (Supplementary Fig. 2C, D). The poor correlation between protein
abundance and metabolic fluxes suggested a potential regulatory role of
post-translational changes in these metabolic enzymes.

To find potential regulatory phosphorylation sites of metabolic en-
zymes we first assessed the correlation between phosphorylation levels
and the respective abundance of the protein. As expected, phosphosites
fold-changes were tightly correlated with protein abundance (spear-
man's r = 0.56, p-value = 9.0e−44) (Fig. 3B). To focus on phos-
phorylation changes that are independent of the protein abundance we
only considered residues that change significantly in phosphorylation
but not in abundance. This process allowed us to obtain a list of 18
phosphorylation-sites in metabolic enzymes that show significant
changes in phosphorylation in FH-deficient cells (Fig. 3C).

Subsequently, we enquired which of these differentially phos-
phorylated sites are more likely to have a functional impact in the
metabolic enzyme. To that end, we resorted to the in silico estimated
fluxes to rank the metabolic enzymes according to the flux changes,
UOK262 vs UOK262pFH, on their catalysed reactions. In particular, we
used the genomic annotation in the metabolic model to map the se-
lected phosphosites in the metabolic enzymes to the reactions they
catalyse, covering 20 phosphosite-reaction interactions (Supplementary
Table 4) (Fig. 3D). With our analysis, we recapitulated 3 previously
reported regulatory residues in PhosphositePlus (Hornbeck et al.,
2015), i.e. PDHA1_S232, PGK1_S203 and RRM2_S20. Among the top
changing reactions with matched phosphorylation changes is PDHA1,
where reaction PDHm shows decreased metabolic flux and increased
phosphorylation in S232. This result is consistent with current litera-
ture that shows that increased phosphorylation in any of the serine
residues in positions 232, 293 and 300 of PDHA1 inactivates the en-
zyme, and its function is only restored when these residues have been
dephosphorylated (Kato et al., 2008; Korotchkina and Patel, 2001;
Seifert et al., 2007). While PDHA1 phosphorylation was detected in the
phosphoproteomics, its total protein abundance was not detected in the
proteomics data-set. This is likely due to inherent technical limitations
of mass-spectrometry experiments to detect the full expressed pro-
teome. To further validate our predictions, we first confirmed PDHA1
abundance by Western Blotting (WB), and showed that there are no
significant changes between UOK262 and UOK262pFH (Fig. 4A). Also,
we confirmed, by WB, that S232 phosphorylation is significantly in-
creased in FH-deficient cells, and despite no other PDHA1 phosphor-
ylation sites were measured we also validated that S293 shows similar

significant increase in phosphorylation (Fig. 4A).
Next, we validated the predicted inactivation of PDHm by mea-

suring the conversion of glucose-derived pyruvate to citrate, a two-step
reaction that involves PDH-mediated conversion of pyruvate to acetyl-
CoA and the condensation of acetyl-CoA with oxaloacetate to generate
citrate. To this aim, cells were incubated with 13C6-glucose and the
isotopologue distribution of pyruvate and citrate was analysed by LC-
MS (schematic in Fig. 4B). Whilst glucose uptake is increased in FH-
deficient cells (Yang et al., 2013) (Supplementary Fig. 2D), the in-
corporation of glucose-derived molecules into citrate is significantly
reduced in FH-deficient cells, consistent with the inhibition of PDH
activity and the prediction of the model based on phosphoproteomics
data (Fig. 3C). Lastly, we explored the relevance of our finding in two
independent human tumour samples, and consistently with our pre-
dictions HLRCC tumours display increased abundance of PDHA1 S232
phosphorylation compared to adjacent normal kidney tissue (Fig. 4C).

3. Discussion

Metabolism deregulation is a hallmark of cancer (Hanahan and
Weinberg, 2011, 2000) however how these changes are orchestrated is
still unclear. Post-translational modifications of metabolic enzymes,
including phosphorylation, are emerging as important regulatory
checkpoints for fine tuning metabolic pathways. Yet, understanding
how these changes control metabolism at a system level requires an
integrative perspective. Here we acquired and analysed data char-
acterizing the proteome, phosphoproteome, and metabolome of cell
lines lacking FH, to investigate post-translational mechanisms of reg-
ulation of their metabolism.

Since only a fraction of the phosphorylation-sites across the pro-
teome have a significant biological role (Beltrao et al., 2012) and as few
as 20% are mapped to kinases or phosphatases (Dinkel et al., 2011;
Hornbeck et al., 2015), it is important to asses the functional impact of
phosphorylation changes. In this work, we provided evidence that
combining phosphoproteomics data with measurements of fluxes of
metabolic enzymes enables an accurate prediction of how enzyme ac-
tivity can be regulated by post-translational modifications in human
cancer cells. To estimate intracellular metabolic fluxes, we took ad-
vantage of genome-scale metabolic models constrained with quantita-
tive experimental data of CORE rates of metabolites. Accurate quanti-
fication of the metabolic rates was important to rule out possible
confounding effects, such as cell number and cell size, and to robustly
estimate the metabolic differences between the two cell lines. The in
silico estimated metabolic fluxes recapitulated several biological phe-
notypes of the UOK262 cell lines, for example, increased glycolytic flux,
decreased mitochondrial respiratory function and increased lactate se-
cretion (Sciacovelli et al., 2016). In general, metabolic pathway fluxes
were not associated with protein abundance, in agreement with results
in microorganisms that showed that transcriptional profile is a poor
predictor of metabolism (Machado and Herrgård, 2014). These results
emphasise the importance to take in consideration other sources of
regulation, in particular post-translational modifications such as phos-
phorylation.

Using metabolic fluxes as readouts of functional activity of meta-
bolic enzymes, we performed a systematic identification of putative
regulatory phosphosites of metabolic enzymes by matching phosphor-
ylation changes in the enzymes residues with the flux changes of the
catalysed reactions. Phosphorylation changes displayed strong corre-
lation with protein abundance, and we therefore focused on metabolic
enzymes that did not have measured significant protein abundance
changes. From our list of putative regulatory phosphosites we re-
capitulated three, PDHA1_S232, PGK1_S203 and RRM2_S20, that were
previously reported in PhosphositePlus (Hornbeck et al., 2015). In
particular, we explored the potential regulatory implication of S232 in
FH-deficient cells. Resorting to glucose labelling experiments we vali-
dated the prediction that increased phosphorylation is accompanied by
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a decreased flux of glucose into the mitochondria. These findings show
the functional role of PDHA1 phosphorylation in the regulation of
metabolism, and could have important implications in broad cellular
phenotypes such as energy production and cell growth. Notably, we
showed that increased phosphorylation of PDHA1 S232 is also present
in human tumours, reinforcing the importance of this finding and the
usefulness of integrated ohmics approaches to reveal molecular changes
with potential impact for clinical outcomes. PDHA1 functional phos-
phosites are regulated by PDK kinases and PDPK phosphatases (Kato
et al., 2008; Korotchkina and Patel, 2001; Seifert et al., 2007). While
dysregulation of these proteins can provide mechanistic insight into the
regulation of PDHA1, further work would need to be carried out, such
as perturbation dynamic phosphoproteomics experiments, to validate
the regulatory role of PDK and PDPK and of other potential upstream
kinases and signalling pathways involved in FH-deficient cells. Another
potential regulatory phosphosite is S83 in glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) for which our measurements show a sig-
nificant decrease in phosphorylation and increase in metabolic flux.
While further experimental evidence is required to confirm these
findings, this hypothesis can potentially provide insights into the in-
activation of GAPDH to re-route glycolysis flux into pentose phosphate
pathway in response to potential oxidative stress (Grant, 2008) a phe-
nomenon that has been reported in FH deficient cells (Sourbier et al.,
2014).

In summary, this work provides for the first time a genome-scale
study of the regulatory implications of post-translational modifications

in the metabolism of FH-deficient cancer cells. Specifically, we ex-
emplify the utility of our approach to identify in a systematic manner
potential regulatory phosphorylation residues in metabolic enzymes,
which can help to shed light into the complex regulation of cancer
metabolism. This approach is also generally applicable to the study of
other types of post-translational modifications that fall on metabolic
enzymes, for example acetylation and succination, a modification
caused by increased fumarate in FH-deficient cells (Yang et al., 2014).
Pairing recent studies that have characterised the phosphoproteome of
several hundreds of tumour samples (Mertins et al., 2016; Zhang et al.,
2016) with metabolomics measurements will potentiate the discovery
of novel therapies that exploit ubiquitous features of cancer metabo-
lism.

4. Methods

4.1. UOK262 and UOK262pFH cells growth

Human FH-mutant UOK262 and FH-reconstituted UOK262pFH cells
were obtained as previously described (Frezza et al., 2011; Sciacovelli
et al., 2016). All cells were grown in DMEM (Gibco 41966-029) sup-
plemented with 10% heat inactivated FBS (Gibco 10270-106) in in-
cubator at 37 °C in the presence of 5% CO2. Cell stocks were maintained
in T75 flasks (Thermo Fisher Scientific) and passaging done twice a
week using 0.25% trypsin (Gibco, 15090046 diluted in PBS-EDTA).

Fig. 4. Experimental validation of PDHA1 phosphorylation regulation in FH-deficient cells. A) Western Blot of PDHA1 protein abundance (PDH-E1a) and PDHA1 S232 (PDH-E1a-
pSer232) and S293 (PDH-E1a-pSer293) phosphorylation. Calnexin was used as loading control and V5 to stain re-expressed V5-FH-wt in UOK262pFH. B) 13C-Glucose labelling ex-
periment tracking the uptake of glucose into the mitochondria via PDHA1. C) Immunohistochemistry of HLRCC tumours and corresponding adjacent normal kidney tissue stained for
PDHA1 and PDHA1 S232 phosphorylation and 2-succinic-cysteine (2SC).
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4.2. Proteomics and phosphoproteomics mass-spectrometry experiment

Proteomics experiments were performed using mass spectrometry as
reported (Casado et al., 2013; Rajeeve et al., 2014). Urea lysis buffer
was used to lyse the cells (8 M urea, 10 mM Na3VO4, 100 mM β-gly-
cerol phosphate and 25 mM Na2H2P2O7 and supplemented with
phosphatase inhibitors (Sigma)). Proteins were reduced and alkylated
by addition of 1 mM DTT and 5 mM iodoacetamide, followed by
overnight incubation with immobilised trypsin to digest proteins into
peptides. Using OASIS HLB columns (Waters), in a vacuum manifold,
peptides were desalted by solid phase extraction (SPE) following the
manufacturer's guidelines apart that the elution buffer contained 1 M
glycolic acid. Titanium dioxide (TiO2) enrichment beads (GL Sciences)
was used for the phosphoproteomics analysis, similarly to that de-
scribed (Casado et al., 2013; Montoya et al., 2011). Samples were
analysed with LC-MS/MS using a LTQ-Orbitrap mass-spectrometer.
Mascot was used to identify peptides against SwissProt human protein
database, and Pescal used for quantification.

Nanoflow LC–MS/MS in an LTQ-orbitrap was used to analyse dried
peptide extracts dissolved in 0.1% TFA. Gradient elution, 2–35%, from
buffer B in 90 min with buffer A being used to balance the mobile phase
(buffer A was 0.1% formic acid in water and B was 0.1% formic acid in
acetonitrile). SwissProt (version 2013.03) was used to search the MS
with mass window of 10 ppm and 600 mmu for parent and fragment
mass to charge values. Only human entries were considered using
Mascot search engine (version 2.38). Searches for variable modifica-
tions were constituted by oxidation of methionine, pyro-glu (N-term)
and phosphorylation of serine, threonine and tyrosine. False discovery
rate of less than 1%, calculated by comparing against decoy databases,
was considered. Peak areas of the first three isotopes of each peptide ion
extracted chromatographs (mass 7 ppm and 1.5 min retention time
window) was used for quantification. Retention shifts were taken in
consideration by re-calculating for each peptide in each LC–MS/MS run
individually using linear regression based on common ions across runs.
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016)
partner repository with the dataset identifier PXD006693.

4.3. Differential protein and phosphorylation analysis

MS intensities were log2 transformed followed by a scaling in each
sample to account for potential pipetting differences. Only proteotypic
peptides measured consistently across half of the replicates were con-
sidered. Differential protein and phosphorylation changes were per-
formed between UOK262 and UOK262pFH, i.e. log2(UOK262) -
log2(UOK262pFH). Statistically significant changes were estimated
using independent t-test, followed by control for false discovery rate
using Benjamini–Hochberg FDR.

4.4. Consumption and release quantification of metabolites

UOK262 and UOK262pFH were detached using trypsin as described
above and counted using CASY Cell counter (OLS, Germany). Cells (1.5
× 105) were plated onto 6-well plates (Thermo Fisher Scientific) and
allowed to grow for 16 h. Cell culture media (200 µl) were collected
from each well immediately after (t = 0). Then medium was replaced
with fresh one and collected after additional 24 h of incubation. A plate
with control medium only was prepared at t = 0 and collected after
24 h for background measurements. Cells from an additional plate
prepared in parallel were used for counting or lysed in RIPA buffer for
measurement of protein content at both t = 0 and t = 24. The collected
media were centrifuged at 4 °C for 10 min at max speed and 50 µl of the
supernatant extracted in 750 µl of cold metabolite extraction buffer
(MEB) as previously described (Sciacovelli et al., 2016). The solution
was centrifuged at 4 °C for 10 min at max speed and the supernatant
was transferred onto LC-MS vials for metabolomics analyses. For

protein content, RIPA extracts were measured using Pierce BCA Protein
Assay kit (Thermo Fisher Scientific) following manufacturer's protocol.

LC-MS analysis of sample extracts was performed on a Q Exactive
mass spectrometer coupled to Dionex UltiMate 3000 Rapid Separation
LC system (Thermo Fisher Scientific). The liquid chromatography
system was fitted with a SeQuant ZIC-pHILIC (150 mm × 2.1 mm,
5 µm) with guard column (20 mm × 2.1 mm, 5 µm) from Merck
(Darmstadt, Germany). The mobile phase was composed of 20 mM
ammonium carbonate and 0.1% ammonium hydroxide in water (sol-
vent A), and acetonitrile (solvent B). The flow rate was set at 180 µl ×
min−1 with the following gradient: 0–1 min: hold at 70% B; 1–16 min:
linear gradient from 70% to 38% B; 16–16.5 min: linear gradient from
38% to 70% B; 16.5–25 min: hold at 70% B. The mass spectrometer was
operated in full MS and polarity switching mode. Medium from five
independent cell cultures were analysed for each condition and samples
were randomised in order to avoid bias in sample analyses due to
machine drift. The acquired spectra were analysed using XCalibur Qual
Browser and XCalibur Quan Browser software (Thermo Fisher
Scientific) by referencing to an internal library of compounds.

Absolute quantification of metabolites in the cell culture medium
was performed by interpolation of the corresponding standard curves
obtained from commercially available compounds running with the
same batch of samples. For each spent medium sample and each me-
tabolite, the measured concentration spent was converted to con-
sumption/release (CORE) data (molar amounts per dry weight per unit
time) adapting the approach described in (Jain et al., 2012).

4.5. Immunohistochemistry on HLRCC human tumours

Specimens were formalin fixed and embedded in paraffin wax; 3-μm
serial sections mounted on Snowcoat X-tra slides (Surgipath, Richmond,
IL) were dewaxed in xylene and rehydrated using graded ethanol wa-
shes. For antigen retrieval, sections were immersed in preheated DAKO
target retrieval solution (DAKO) and treated for 90 s in a pressure
cooker. Sections analysed contained both tumour and adjacent normal
renal parenchyma acting as an internal control; in addition, substitution
of the primary antibody with antibody diluent was used as a negative
control. Antigen/antibody complexes were detected using the Envision
system (DAKO) according to the manufacturer's instructions, with the
following modifications: incubation of primary antibody for 1 h in a
humidified chamber. Sections were counterstained with Gill's haema-
toxylin for 30 s, dehydrated in graded ethanol washes, and mounted in
DPX (Lamb, London, United Kingdom). Antibodies used were: anti-2-
succinic-cysteine (2-SC, gift from Patrick Pollard, used 1:5000 dilution),
PhosphoDetect™ Anti-PDH-E1α (pSer232) Rabbit pAb (used in 1:1000
dilution) purchased from Merck, and PDH Monoclonal Antibody
(9H9AF5) (used in 1:200 dilution) purchased from ThermoFisher. All
patients provided informed consent, REC approval number 16/WS/
0039.

4.6. Metabolic extracts after glucose and glutamine labelling

UOK262 and UOK262pFH (1.5 × 105) were plated onto 6-well
plates (Thermo Fisher Scientific) and grown overnight. The day after,
medium was replaced with fresh medium containing 13C6 glucose or
13C5 glutamine (Cambridge Isotope Laboratories). The following day,
medium was extracted as described above at the indicated time points.
Intracellular extracts were obtained as described before (Sciacovelli
et al.2016). Cells were counted using Countess (Thermo Fisher Scien-
tific) or CASY Cell counter (OLS, Germany) as described before
(Sciacovelli et al., 2016).

4.7. Metabolic modelling using Recon 2.2

For this analysis the human metabolic reconstruction Recon 2.2 was
used (Swainston et al., 2016). The commonly used ATP maintenance
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(ATPM) reaction was added to the model (ATP + H2O =>ADP +
Phosphate + H+). This reaction accounts for ATP production not di-
rectly associated with biomass production. Two context-specific models
were generated: one for UOK262 cells and another for UOK262pFH.
UOK262 model contains the specific measured growth rate, 0.01973,
and hard coded deletion of FH by setting the upper and lower bounds of
reactions FUM and FUMm to zero. UOK262pFH model is only con-
strained with the measured growth rate, 0.02940, since FH expression
and activity is restored in these cell lines the catalysed reactions were
not constrained. Uptake rates for all metabolites are constrained to
zero, apart of those metabolites present in cell culture medium, DMEM
(Gibco 41966-029). For metabolites in the medium that were not
measured or do not display significant CORE differences the exchange
reactions lower bound were set similarly to the following publication
(Yizhak et al., 2013). Consumption/Release (CORE) measurements
were used to constrain the metabolic models of UOK262 and
UOK262pFH, by constraining the respective exchange reaction rates. To
avoid infeasible solutions due to measurement precision, the measured
rates were fitted to the steady-state solution space using a linear im-
plementation of minimization of metabolic adjustment (MOMA) (Segrè
et al., 2002). Next, the models were simplified using flux variability
analysis (FVA), thereby removing any reaction that is not capable of
carrying flux. The models were then simulated using parsimonious flux
balance analysis (pFBA) (Lewis et al., 2010). Since the growth rates are
directly measured and used as model constraints, the simulations are
performed by maximising the non-growth-associated ATP production
(ATPM reaction).

4.8. Cell Lysates and western blot

UOK262 and UOK262pFH cells (6 × 105) were plated onto 6-cm
dishes. After 24 h, cells were washed twice in PBS on ice and then lysed
using RIPA buffer. Protein content was quantified using Pierce BCA
protein Assay (Thermo Fisher Scientific) following manufacturer's
protocol. Lysed proteins (50–100 µg) were heated at 70 °C for 10 min in
Bolt Loading Buffer 1x+4% β-mercapto-ethanol and then loaded onto a
4–12% Bolt Bis-Tris gel (Thermo Fisher Scientific). Gels were run at
165 V using Bolt MES1x buffer for 40 min. Dry transfer of the proteins
onto nitrocellulose membrane was obtained using IBLOT2 (Thermo
Fisher Scientific). Membrane was then blocked for 1 h at room tem-
perature using in BSA or milk 5% in TBS 1X supplemented with
Tween20 0.01% (TBST). Primary antibodies for Calnexin (1:2000,
Abcam), V5 (1:5000,Thermo Fisher Scientific), PDH-E1a (1:500,
Thermo Fisher Scientific), pSer232 PDH-E1a (1:500, Merck Millipore),
and pSer293 PDH-E1a (1:500, Merck Millipore) were incubated over-
night at 4 °C. The day after, the membrane was washed in TBST and
then incubated with secondary antibodies for 1 h at room temperature
(LiCOR, 1:2000, conjugated with 680 or 800 nm fluorophores). After
washes in TBST, images were taken using Image Studio Lite software
(LiCOR).

4.9. Code dependencies and availability

All the computational analysis were performed in Python version
2.7.10 and are available under GNU General Public License V3 as
GitHub projects in the following url https://github.com/saezlab/hlrcc.
Metabolic modelling and SBML import of Recon 2.2 was performed
using python module Framed version 0.3.2 (Machado, 2017). Plotting
was done using Python modules Matplotlib version 1.4.3 (Hunter,
2007) and Seaborn version 0.7.0 (Waskom et al., 2014). Python mod-
ules Scipy version 0.17.1 (Jones et al., 2016) and Numpy version 1.11.1
(der Walt et al., 2011) were used to perform efficient numerical cal-
culations and statistical analysis. Biological data analysis and struc-
turing was carried out using Python module Pandas version 0.18.1
(McKinney et al., 2010).
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