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Dynamic partitioning of branched-chain
amino acids-derived nitrogen supports
renal cancer progression

Marco Sciacovelli1,2,18, Aurelien Dugourd3,4,18, Lorea Valcarcel Jimenez 1,5,
Ming Yang1,5, Efterpi Nikitopoulou1, Ana S. H. Costa 1,6, Laura Tronci1,
VeronicaCaraffini1, Paulo Rodrigues1, Christina Schmidt1,5, DylanGerard Ryan 1,
Timothy Young1, Vincent R. Zecchini1, Sabrina H. Rossi 7, Charlie Massie 7,
Caroline Lohoff3, Maria Masid 8,9, Vassily Hatzimanikatis 8,
Christoph Kuppe 4,10, Alex Von Kriegsheim11, Rafael Kramann4,10,12,
Vincent Gnanapragasam 13, Anne Y. Warren14, Grant D. Stewart 13,
Ayelet Erez 15, Sakari Vanharanta 1,16,17, Julio Saez-Rodriguez 3,19 &
Christian Frezza 1,5,19

Metabolic reprogramming is critical for tumor initiation and progression.
However, the exact impact of specific metabolic changes on cancer progres-
sion is poorly understood. Here, we integrate multimodal analyses of primary
and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in
physiologicalmedia to identify key stage-specificmetabolic vulnerabilities.We
show that aVHL loss-dependent reprogrammingof branched-chain amino acid
catabolism sustains the de novo biosynthesis of aspartate and arginine
enabling tumor cells with the flexibility of partitioning the nitrogen of the
amino acids depending on their needs. Importantly, we identify the epigenetic
reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme sup-
pressed in primary ccRCC, as a crucial event formetastatic renal cancer cells to
acquire the capability to generate arginine, invade in vitro and metastasize
in vivo. Overall, our study uncovers a mechanism of metabolic flexibility
occurring during ccRCC progression, paving the way for the development of
novel stage-specific therapies.

Cancer is an ever-evolving disease in which tumor cells are subject to
constant changes in nutrient and oxygen availability within the tumor
microenvironment. To adapt to different microenvironments during
tumor evolution, cancer cells becomemetabolically flexible, a process
orchestrated either directly bymetabolites availability or by activation
of oncogenic signaling1. Consistently, it has been shown that tumors at
different stages aremetabolically distinct2–7. For instance, solid tumors
use nutrients such as glucose to generate the biomass necessary to
sustain their high proliferative demands4,7, whereas successful metas-
tasis relies more on pyruvate, glutamine, lipid metabolism and, in

specific tumor types, on mitochondrial metabolism such as oxidative
phosphorylation6,7

High-throughput metabolomics technologies are widely used to
study cancer metabolism. However, despite the simultaneous mea-
surement of hundreds of metabolites, this approach cannot fully
capture the complexity and dynamics of the altered metabolic net-
work. Therefore, it is crucial to develop computational algorithms that
can extractmore biological insight from sparsemetabolomics data8–10.
These methods, combined with in vitro experimental conditions that
mimic the nutrient microenvironment of the tumor in vivo11,12, can be
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used not only to dissect the complexity of tumor metabolism regula-
tion, but also to identify new metabolic vulnerabilities in vivo.

Clear cell renal cell carcinoma (ccRCC), the most common histo-
logical subtype of RCC that accounts for 70% of renal malignancies13,
has been extensively studied for its profound metabolic
reprogramming14–16. ccRCCarises fromepithelial tubular cells17 and it is
driven by (epi)genetic lesions affecting the Von Hippel-Lindau tumor
suppressor (VHL).VHL loss leads to robust activationof pro-oncogenic
signaling mediated by the hypoxia inducible factor 2A (EPAS1/
HIF2A)18–20, which transcriptionally orchestrates some of the most
prominent metabolic alterations of these tumors. ccRCC tumors are
fueled by aerobic glycolysis rather than oxidative phosphorylation
(OXPHOS) due to HIF-mediated metabolic reprogramming and the
mitochondrial dysfunction frequently observed in these tumors14,21,22.
Over the last years, other pathways were added to the metabolic
landscape of ccRCC, including dysregulated tryptophan, arginine, and
glutamine metabolism, together with enhanced lipid and GSH
biosynthesis14. Only recently, it was shown that the genomic loss or
suppression of urea cycle (UC) genes such as Arginase 2 (ARG2) and
argininosuccinate synthetase (ASS1) favors renal cancer growth, pre-
serving the consumption of pyridoxal 5′-phosphate23. ccRCC tumors
are also metabolically flexible, and the metabolic landscape of late-
stage renal cancers is distinct from that of primary renal tumors16.
More specifically, it was shown that upregulation of GSH biosynthesis,
cysteine/methionine metabolism and polyamine pathways is asso-
ciated with advanced ccRCC16. However, how themetabolic landscape
of renal tumors evolves through progression, is regulated atmolecular
level, and impacts on tumor biology is largely unknown.

In this work, through a multi-omic analysis of primary and meta-
static ccRCC cells, we identify the reprogramming of the branched-
chain amino acid catabolism in renal cancer cells as a source of
metabolic flexibility that sustains tumor growth. We showed that this
reprogramming, dependent on VHL loss, provides cancer cells with
enhanced capability to synthetize aspartate using the nitrogen derived
from BCAA. Importantly, we observed that additional epigenetic
reactivation of ASS1 specifically in metastatic cells allows them to
generate arginine using the nitrogen of BCAA, invade in vitro and
metastasize in vivo. Overall, our study identify a mechanism of meta-
bolic flexibility occurring during ccRCC progression that has the
potential to become a target for future stage-specific intervention
strategies.

Results
To identify metabolic pathways reprogrammed in ccRCC progression,
we first performed an enrichment analysis (GSEA) of tumor vs. mat-
ched normal tissue using the ccRCC(KIRC) RNA-seq dataset from The
Cancer GenomeAtlas (TCGA) (Fig. 1a).We identified amongst themost
upregulated pathways in the tumors ribosome, DNA replication and
signaling cascadeswhile keymetabolic features dysregulated in ccRCC
tumors included not only the suppression of OXPHOS and TCA cycle
but also arginine, BCAAs, tryptophan, and pyruvate metabolism
(Fig. 1a), in linewith previous findings16,19,24–26. BCAA catabolism (valine,
leucine and isoleucine degradation) was themost suppressed pathway
in renal tumors. Interestingly, all the genes of the pathway were sig-
nificantly downregulated in the tumor samples, except for the
Branched-Chain Amino Acid Transaminase 1 (BCAT1) and the lysoso-
mal amino acids oxidase Interleukin 4 Induced 1 (IL4I1), which were
strongly upregulated (Fig. 1b). This apparent discrepancy between the
expression of BCAT1 and the other genes from the BCAA catabolism
suggests that additional mechanisms beyond the transcriptional con-
trol may be involved in the fine-tuning of the pathways in tumors.
Then, we focused on metabolic pathways that are transcriptionally
deregulated during ccRCC progression. To this end, we compared
RNA-seq from patients with locally advanced and metastatic (stage
III + IV) vs. localized (stage I + II) ccRCC tumors. Using this approach,

we identified metabolic pathways suppressed in stage III-IV cancers,
with the BCAA catabolism as the top downregulated one (Fig. 1c).
Consistent with a role for BCAA catabolism in ccRCC progression, the
overall survival of patients with ccRCC correlated with the expression
level of this pathway (Fig. 1d), with high expression associated with
better prognosis. Of note, a significant correlation between BCAA
enzyme levels and patient survival was only observed in a few tumor
types, including renal cancer (KIRC and kidney renal papillary cell
carcinoma KIRP) and colorectal cancer (Supplementary Fig. 1a, b).
Thus, the suppression of BCAA catabolism is a metabolic hallmark of
renal cancer and is independent of the cancer stage.

To assess the role of BCAA catabolism in renal cancer, we com-
pared HK-2 proximal tubule kidney epithelial cells with a panel of
ccRCC cell lines, 786-O, OS-RC-2, RFX-631 and the metastatic deriva-
tives, 786-M1A, 786-M2A, andOS-LM127 (Fig. 2a). Tomimic the nutrient
availability in vivo, we cultured all the cell lines in Plasmax, a recently
developed physiological medium based on the human serum’s nutri-
ent composition12. First, we performed a liquid chromatography-mass
spectrometry (LC–MS) metabolomic analysis of the cells stably grown
in Plasmax or standard culture medium (RPMI) and correlated it with
the metabolic profile of a cohort of renal tumors andmatched healthy
renal tissues9. The metabolic profiles of cells grown in Plasmax
exhibited a significant correlation with the profiles of tumor and nor-
mal tissues (p-value < 10−6),which is slightly higher compared to thatof
cells cultured in RPMI (p-value < 10−8) (Supplementary Fig. 2a). Fur-
thermore, when we analyzed their transcriptomic profile (Supplemen-
tary Fig. 3g–j), ccRCC cells grown in Plasmax displayed the activation
of transcription factors (TF) such as Hypoxia-inducible Factor 2A
(HIF2A, EPAS1 gene),MYCAssociated FactorX (MAX), and Paired Box8
(PAX8), known drivers of ccRCC20,27,28 (Supplementary Fig. 2b). Con-
sistent with previous data27,29, the metastatic cell lines maintained the
expression of specific metastatic markers such as the C-X-C Motif
Chemokine Receptor 4 (CXCR4), the Cytohesin 1 Interacting Protein
(CYTIP), the Latent Transforming Growth Factor Beta Binding Protein 1
(LTBP1) and the SLAM Family Member 8 (SLAMF8) (Supplementary
Fig. 2c). We then investigated the differential expression of the meta-
bolic pathways in the renal cells HK2, 786-O and 786-M1A cultured in
Plasmax using proteomics (Supplementary Fig. 3d–f). Enrichment
analysis of proteomics data indicated that glycolysis, purine, and glu-
tathione metabolism were upregulated while the BCAA catabolism,
together with the OXPHOS and the TCA cycle, were amongst the most
suppressed metabolic pathways in both 786-O and 786-M1A when
compared with HK2 cells (Fig. 2b), in line with the results of the renal
tumors from patients (Fig. 1a). Importantly, the majority of the pro-
teins detected that belong to the BCAA catabolismwere suppressed in
786-O vs. HK2 cells with the exception of a few enzymes including
BCAT1, Short/Branched-Chain Specific Acyl-CoA Dehydrogenase
(ACADSB), and the Aldehyde Dehydrogenase 2 (ALDH2) (Supplemen-
tary Fig. 2d). Notably, the levels of both BCAA catabolismandOXPHOS
related proteins were further suppressed in metastatic 786-M1A
compared to primary 786-O (Fig. 2c), as observed in the most
aggressive renal tumors (Fig. 1c). The suppression of theOXPHOS in all
renal cancer cells was confirmed by the lower basal and stimulated
cellular respiration compared to HK2 cells (Supplementary Fig. 2e). To
functionally validate the GSEA results, we used ourmetabolomics data
(Fig. 2d, e and Supplementary Fig. 3a–c).We observed that both 786-O
and 786-M1A have lower intracellular levels of leucine and isoleucine,
while they accumulated C5 carnitines and methylmalonylcarnitines
(detected as methylmalonylcarnitine+succinylcarnitine), by-product
metabolites derived from intermediates of BCAA catabolism, while no
significant differences were observed in C3-carnitines (Fig. 2d–f and
Supplementary Fig. 2f). The accumulation of by-product metabolites
derived from intermediates of BCAA catabolism might be the con-
sequence of the suppression of key acyl-CoA dehydrogenases that
belong to the BCAA catabolism such as Isovaleryl-CoA dehydrogenase

Article https://doi.org/10.1038/s41467-022-35036-4

Nature Communications |         (2022) 13:7830 2



(IVD) and Methylmalonyl-CoA mutase (MUT) (Fig. 2g). Intriguingly,
metastatic 786-M1A cells displayed higher accumulation of methyl-
malonylcarnitine when compared to 786-O cells (Fig. 2e and Supple-
mentary Fig. 2f), suggesting a potentially enhanced dysregulation of
BCAA catabolism. Finally, the uptake of BCAAs was not significantly
different among the cells types, with the exception of valine in 786-O
and 786-M1A cells (Supplementary Fig. 2g), even though the hetero-
dimer transport system between the Solute Carrier Family 7Member 5
(SLC7A5, LAT1) and Solute Carrier Family 3 Member 2 (SLC3A2, CD98)
(Supplementary Fig. 2h) was upregulated in all ccRCC cells compared
to HK2 cells.

To further characterize the metabolic landscape of ccRCC cells
during progression, including the reprogramming of BCAA catabo-
lism, we developed ocEAn (metabOliC Enrichment Analysis), a com-
putational method that generates a metabolic footprint for each
metabolic enzyme present in the recon2metabolic reaction network30

(Supplementary Fig. 4a, methods), to our metabolomics data. These
footprints show themetabolites directly or indirectly associatedwith a
givenmetabolic enzyme, their abundances and relative position either

upstream or downstream of the reaction. Through the metabolic
footprints, ocEAn provides an overview of the metabolic alterations
centered on the single enzyme, highlighting patterns of imbalance
between the upstream and downstream metabolites mapped in the
enzyme footprint (Supplementary Fig. 4a; full interactive network
available at: https://sciacovelli2021.omnipathdb.org). We applied this
tool to study the activity of BCAT1, a key enzyme at the entry point of
BCAA catabolism in our renal cellular models. BCAT1 was found
upregulated both in the tumors fromTCGA (Fig. 1b) and in ccRCC cells
at the protein level (Supplementary Fig. 2d). All ccRCC cells displayed
lower BCAAs levels upstream of BCAT1 with a significant upregulation
of carnitines derived from intermediates of the BCAA catabolism,
notably methylmalonylcarnitine (log2 FC > 2, FDR < 10−40) and C5-
carnitines downstream of the reaction (Fig. 3a and Supplementary
Fig. 2f). One of the benefits of ocEAn is the possibility to uncover
deregulated metabolites indirectly associated with an enzyme, either
upstream or downstream, that might contribute to its biological
function. Intriguingly, we found that argininosuccinate, an inter-
mediate product of the urea cycle strongly downregulated in 786-O
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compared to HK2, was the top upregulatedmetabolite downstreamof
BCAT1 in the metastatic 786-M1A cells when compared to 786-O
(Fig. 3a). This result suggests that some products of BCAT transami-
nation are shunted in the urea cycle in the renal cancer cells and also
that the functioning of the urea cyclemight differ between 786-M1A vs.
786-O.

To understand the biological relevance of the BCAA catabolism
reprogramming in ccRCC progression and its involvement in the acyl-
carnitines accumulation, we cultured HK2, 786-O and the derived
metastatic cells (786-M1A and 786-M2A) together with additional
ccRCC cells (OS-RC-2 and metastatic derivatives OS-LM1; RFX-631,
Fig. 2a) in the presence of 13C6 leucine+isoleucine andwemeasured the

a b c

ed f

ccRCC cell line

metastatic derivatives

in
-v

iv
o 

se
le

ct
io

n

786-O
OS-RC-2
RFX-631

786-M1A
786-M2A

HK2 renal epithelial cells

OS-LM1

isovaleryl-CoA

C5-carnitine

C3-carnitine

TCA cycle

leucine isoleucine

propionyl-CoA

BCKAs

BCAT1/2

BCKDH

carnitine

carnitine

leucine isoleucine

BCKDK
S293

valine

valine

SLC7A5
SLC3A2

�-methylbutyryl-CoA

ACADS

ACADSB
ACADM

IVD

MMUT

isobutyryl-CoA

C5-carnitine

carnitine

ACADS

ACADSB
ACADM

methyl-malonyl-CoA carnitine

methylmalonylcarnitine
+succinylcarnitine

carnitine

succinyl-CoA

786-M1A vs HK2
786-O vs HK2

ecm receptor interaction
spliceosome

arrhythmogenic right ventricular cardiomyopathy 
fatty acid metabolism

valine leucine and isoleucine degradation
small cell lung cancer

tryptophan metabolism
tight junction

oxidative phosphorylation
lysosome

focal adhesion
hypertrophic cardiomyopathy hcm

dilated cardiomyopathy
steroid biosynthesis

butanoate metabolism
lysine degradation

propanoate metabolism
n-glycan biosynthesis

snare interactions in vesicular transport
citrate cycle tca cycle

hematopoietic cell lineage
regulation of actin cytoskeleton

pathogenic escherichia coli infection
mapk signaling pathway

natural killer cell mediated cytotoxicity
chemokine signaling pathway

endocytosis
fc gamma r mediated phagocytosis

t cell receptor signaling pathway
apoptosis

drug metabolism other enzymes
mtor signaling pathway

rig i like receptor signaling pathway
glycolysis gluconeogenesis

ubiquitin mediated proteolysis
glutathione metabolism

purine metabolism
neurotrophin signaling pathway

fructose and mannose metabolism
pentose phosphate pathway

ribosome

1.4
1.6
1.8
2.0
2.2

−log10(padj)

NES
0−2 -1 1 2

NES
0−1 1 2

786-M1A vs 786-O

dna replication
glutathione metabolism

valine leucine and isoleucine degradation
oxidative phosphorylation

citrate cycle tca cycle
ubiquitin mediated proteolysis

purine metabolism
butanoate metabolism

lysosome
rig i like receptor signaling pathway

propanoate metabolism
tryptophan metabolism

spliceosome
glycolysis gluconeogenesis

fatty acid metabolism
ribosome

fructose and mannose metabolism
hematopoietic cell lineage

endocytosis
mtor signaling pathway

n glycan biosynthesis
t cell receptor signaling pathway
neurotrophin signaling pathway

lysine degradation
chemokine signaling pathway

apoptosis
pentose phosphate pathway

drug metabolism other enzymes
adipocytokine signaling pathway

steroid biosynthesis
small cell lung cancer

natural killer cell mediated cytotoxicity
fc gamma r mediated phagocytosis

mapk signaling pathway
ecm receptor interaction

tight junction
dilated cardiomyopathy

arrhythmogenic right ventricular cardiomyopathy arvc
pathogenic escherichia coli infection

hypertrophic cardiomyopathy hcm
focal adhesion

−log10(padj)
0.5
1.0
1.5

M
et

ab
ol

ite
s

taurine
methylmalonylcarnitine+succinylcarnitine 

786-M1A vs HK2
786-O vs HK2

t-value
-100-150 -50 0 50

N−acetylaspartate
N−acetylaspartylglutamate

phosphocreatine
glycine

phosphoethanolamine
asparagine

citicoline
serine

N−acetylglutamate
threonine

alanine
N−acetylglutamine

gluconate
glycerophosphoethanolamine

CDP−ethanolamine
ophthalmate

trans−4−hydroxyproline
proline

N−acetylserine
glycerol 3−phosphate

cystathionine
beta−alanine

phosphorylcholine
hexosamine phosphate

N−acetylmethionine
4−hydroxyphenyllactate

methionine
Gly−Gly

CMP−2−aminoethylphosphonate
N−acetylalanine

argininosuccinate
succinylglutathione

tryptophan
citrulline
histidine

N−acetylarginine
glycerophosphocholine

leucine
Val−Lys

phenylalanine
indole

beta−citrylglutamic acid
FAICAR

glucose 1−phosphate
choline

ornithine
N−acetylornithine

betaine
S−(2−succinyl)cysteine
glycerophosphoinositol

methylindole
glutathione oxidized

cysteinyl-glycine
glutathione

acetylcholine
aspartate

carnitinamide
cysteic acid

cis−aconitate
AICAR

glutamate
N−acetylneuramic acid

5−aminovaleric acid
glucuronic acid

C5-carnitine
creatine

deoxyribose 5−phosphate
carnitine

N−acetylhexosamine phosphate
S−adenosylmethionine

mesaconate
pantothenate

2−hydroxyglutarate
hypotaurine

orotidine
malonylcarnitine 
a−ketoglutarate

myo−inositol

abs(value)
50
100 786-M1A vs 786-O

t-value
-50 -25 0

abs(value)

N−acetylaspartate
N−acetylaspartylglutamate

phosphorylcholine
acetylcholine

glucuronic acid
carnitine

NADP
2−aminoadipic acid

gluconate
hexanoylcarnitine C6

hypotaurine
tetradecanoylcarnitine C14

taurine
cAMP

glutathione oxidized
cystathionine

glyceraldehyde 3−phosphate
glutathione

C3-carnitine
betaine

cysteinylglycine
inosine

tetradecenoylcarnitine C14:1
pantothenate

glutamylcysteine
C5-carnitine
 C2-carnitine

Val−Lys
N−acetylglutamine

fructose
glutamyllysine

citrulline
threonine

valine
methylhistidine

glutamate
S−adenosylmethionine

phenylalanine
isoleucine

N−acetylornithine
indole

glutamine
tryptophan

leucine
lactate
proline
serine

methionine
beta−citrylglutamic acid

myo−inositol
phosphocreatine

NAD
NADH

N−acetylneuramic acid
cyclic ADP−ribose

glycine
phosphoenolpyruvate

aspartate
asparagine

ophthalmate
2/3−phosphoglycerate

sedoheptulose 7−phosphate
choline

CDP−ethanolamine
methylmalonylcarnitine+succinylcarnitine 

CMP−2−aminoethylphosphonate
argininosuccinate

glycerophosphoethanolamine
citicoline

glycerophosphocholine
glycerol 3−phosphate

20
40
60

HK2 

78
6-O

78
6-M

1A

78
6-M

2A
0

2×108

4×108

6×108

IVD

U
nt

ar
ge

te
d 

la
be

l-f
re

e 
qu

an
tit

at
io

n 
(L

FQ
)

1x10-6

HK2 

78
6-O

78
6-M

1A

78
6-M

2A
0

1×108

2×108

3×108

4×108

5×108

MMUT
g

6.45x10-7

2.2x10-7

2.7x10-8

1.6x10-8
9.4x10-9

Article https://doi.org/10.1038/s41467-022-35036-4

Nature Communications |         (2022) 13:7830 4



generation of labeleddownstreammetabolites, includingKIC/KMV,C5
and C3-carnitines, and TCA cycle intermediates fumarate and malate
(Supplementary Fig. 4b). We detected higher labeling in both C5 car-
nitines andC3-carnitines (C5-carnitinem+5 andC3 carnitinem+3) in all
cancer cells at 1 h and 3 h time points compared to HK2 (Fig. 3b) while
leucine+isoleucine or KIC + KMV labeled percentages were similar
among all cells. These results showed that the upper part of the BCAA
catabolism is still functional in all renal cancer cells, even more active
in ccRCC than normal HK2, independently from the tumor stage.
However, the full oxidation of BCAAs did not significantly contribute
to the generation of TCA cycle intermediates in all renal cells since we
detected a very low fraction of labeled fumarate (3%) and malate
(below 1%) (Fig. 3b). We incubated HK2, 786-O and the derived meta-
static cells with the 13C6 leucine+isoleucine for a longer time (43 h), but
similarly to the shorter time points, the labeled percentages of both
C2-carnitines and fumarate were below 1% despite comparable levels
of labeled intracellular leucine (Supplementary Fig. 4c).Whilst the very
lowpercentage of labeledC2-carnitinemight bedue to the presence of
C2-carnitine in the medium, these results are consistent with previous
reports that showed a limited contribution of BCAAs oxidation in the
TCA cycle in vivo in the kidneys31 and other tumor types32,33.

The BCAA catabolism represents an important source of nitrogen
for amino acids synthesis, based on the production of glutamate
through transaminationof BCAAbyBCATs33,34.Wehave shown that the
BCAAs arenot significantly contributing to the generation of TCAcycle
intermediates in all the renal cells used (Fig. 3b and Supplementary
Fig. 4c) andmoreover, ocEAn highlighted the significant dysregulation
of aspartate, asparagine and argininosuccinate downstream of BCAT1
(Fig. 3a). Therefore, we hypothesized that the reprogramming we
observed in ccRCCmight provide a nitrogen source for the generation
of glutamate and other downstream metabolic reactions. To experi-
mentally validate the biological role of BCAT transamination we cul-
tured HK2, 786-O and 786-derived metastatic cells in the presence of
15N leucine+isoleucine in Plasmax and measured the generation of
15N-labeled glutamate (Fig. 4a). Glutamate is a key amino acid used in
multiple metabolic pathways. For instance, it donates the nitrogen for
the conversion of oxaloacetate into aspartate catalyzed by Glutamate
Oxaloacetate Transaminases (GOT1/GOT2), which through asparagine
synthase (ASNS) can be in the end converted into asparagine (Fig. 4a).
We found that all ccRCC cells generated significantly more glutamate,
aspartate, and asparagine labeled from leucine and isoleucine
(Fig. 4b, c and Supplementary Fig. 5a). Amongother glutamate-derived
amino acids, we also detected increased labeling in proline (proline
m+1) in 786-O, 786-M1A and 786-M2A cells, while serine, glutamine and
alanine m+1 were lower than in HK2 cells (Supplementary Fig. 5a). To
derive aspartate from leucine, cancer cells rely on the reverse reaction
of GOTs, which consumes glutamate derived from leucine

transamination and OAA to generate αKG and aspartate35. In line with
this observation, GOT1 protein levels were higher in ccRCC cells, while
on the contrary, GOT2 was suppressed (Supplementary Fig. 5b).
Similarly, we also detected an increase in ASNS protein levels in all
renal cancer cells, in line with the increased labeling of asparagine in
ccRCC (Supplementary Fig. 5b). Of note, a similar metabolic rewiring
was observed in OS-RC-2, OS-LM1 and RFX-631 cells, that derived a
higher amount of glutamate, aspartate (with the exception of RFX-631
cells), and asparagine from BCAA when compared to normal HK2 cells
(Supplementary Fig. 5c).

To better understand the maximal contribution of BCAT transa-
mination to the generation of aspartate, we cultured the cells in EBSS
where exogenous aspartate, glutamate and other amino acids are
absent, with the exception of 15N leucine. Strikingly, the net contribu-
tion of BCAT transamination to de novo generation of aspartate in
these conditions reaches more than 60% in renal cancer cells (Fig. 4d),
while in HK2 cells it is below 20% even though the intracellular per-
centage of labeled leucine in all cell types is comparable (Supple-
mentary Fig. 5d). We did not observe differences in the relative
percentage of the labeled glutamate in these conditions among the
cells. Considering that aspartate is limiting for nucleotide
biosynthesis36,37, we then assessed whether BCAT1 activity indirectly
contributes to nucleotide pools. To test this hypothesis, we sup-
pressed BCAT activity with a pharmacological inhibitor (BCAT inhi-
bitor 2, BCATI, Fig. 4a), which preferentially targets the cytosolic
BCAT1 isoform38. As a result of the BCAT inhibition, we observed a
suppression of both the BCKAs (KIC+KMV) downstream of BCAT in all
cell types, together with C5-carnitines (Supplementary Fig. 5e).
Importantly, the inhibition of the transamination also significantly
affected intracellular glutamate and aspartate levels, even though the
lattermainly occurred inmetastatic cells (Fig. 4e). As a consequenceof
the alterations of the aspartate pool induced by BCATI, the levels of
carbamoyl-aspartate, dihydroorotate, and uridine monophosphate
(UMP), all intermediates of de novo pyrimidine biosynthesis, together
with inosine monophosphate (IMP) from purine biosynthesis path-
ways, were significantly decreased in 786-O cancer cells and their
metastaticderivatives (Fig. 4f, g). Consistentlywith these observations,
treatment with BCATI impairs the proliferation of all renal cells
(Fig. 4h). Based on the observation that BCATI treatment does not
fully deplete the aspartate and glutamate pool in renal cancer cells
(Fig. 4e),we evaluated the contribution of othermetabolic pathways to
the synthesis of these key metabolites. We observed that several
metabolites downstream of glutaminolysis (a-ketoglutarate, gluta-
mate, 2-hydroxyglutarate) are accumulated in ccRCC cells (Fig. 2d, e)
and it has been shown that glutaminolysis and reductive carboxylation
of glutamine contribute to the synthesis of aspartate in ccRCC
tumors14. Therefore, to measure the contribution of these two

Fig. 2 | Regulation of BCAA catabolism in a cellular model system for renal
cancer progression. a Schematics of the cell lines used in the study. HK2 cells were
derived from normal renal tissue, 786-O, OS-RC-2, RFX-631 from primary ccRCC
and the metastatic 786-M1A, 786-M2A, and OS-LM1 from lung metastases after
injection in vivo. b, c Dot plot of the enriched pathways ranked by significance
obtained through GSEA from proteomic data. Green dots represent 786-O vs. HK2,
orange 786-M1A vs. HK2, blue 786-M1A vs. 786-O. Statistics was calculated using
moderated two-sided Student test, p-values were corrected with
Benjamini–Hochberg procedure. Dot size is proportional to –log10(adj-p-value).
NESnormalized enrichment score.d, eDotplot showing thedifferential abundance
of the indicated intracellular metabolites in the comparisons 786-O vs. HK2
(green),786-M1A vs. HK2 (orange), and 786-M1A vs. 786-O (blue) ranked by t-values.
Datawerenormalized to total ioncount and generated fromN = 3 experiments. The
dimension of the dots represents abs t-values. f Simplified schematic of the BCAA
catabolism. Leucine and isoleucine are imported by the solute carrier system
SLC7A5/SLC3A2, converted into branched-chain keto acids (BCKAs) by BCAT1/2
and subsequently oxidized by BCKDH complex into acyl-CoAs. BCKDH complex is

inhibited by BCKDK-dependent phosphorylation on Ser293 residue. C5 and C3-
carnitines are measured as readout of isovaleryl-CoA and propionyl-CoA, respec-
tively. Acyl-CoAs are further catabolized by IVD, ACADS, ACADSB, ACADM, MMUT
before entering the TCA cycle. Methylmalonylcarnitine and succinylcarnitine are
readouts of methylmalonyl-CoA and succinyl-CoA. Metabolites highlighted by
orange circles are measured by LC–MS. Red circles =metabolites from leucine
catabolism, black circles = metabolites derived from isoleucine, blue circles =
metabolites derived from valine. g Labeled-free quantification (LFQ) of the indi-
cated proteins from the proteomics dataset. Data are shown as mean of 5 inde-
pendent cultures ± SD. Significance was calculated using one-way ANOVA where
each group was compared with HK2. SLC7A5 = solute carrier family 7 member 5;
SLC3A2 solute carrier family 3 member 2, BCAT1/2 branched-chain amino acid
transaminase 1/2, BCKDH branched-chain keto acid dehydrogenase complex,
BCKAs branched-chain keto acids, BCDK branched-chain keto acid dehydrogenase
kinase, IVD isovaleryl-CoA dehydrogenase, ACADS Acyl-CoA dehydrogenase short
chain, ACADSB Acyl-CoA dehydrogenase short/branched-chain, ACADM Acyl-CoA
dehydrogenase medium chain, MMUT methylmalonyl-CoA mutase.
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pathways to the generation of glutamate and aspartate in ccRCC cells
in Plasmax, we performed a 13C5 glutamine tracing experiment in the
presence of CB-839, a glutaminase inhibitor39 and BMS-303141, a
selective inhibitor of ATP Citrate Lyase40 (ACLY, Supplementary
Fig. 6a). As shown in Supplementary Fig. 6b, carbons from glutamine
contribute to glutamate and aspartate carbons in all cell types, even
though their contribution is reduced in cancer cells compared to HK2

(Supplementary Fig. 6b). Importantly, all cells displayed comparable
percentages of citrate m+5, malate m+3, and aspartate m+3 (Supple-
mentary Fig. 6b, c), suggesting a similar contribution of the reductive
carboxylationofglutamine to the generationof thesemetabolites in all
renal cells. As expected, the treatment of the cells with GLSI strongly
suppressed the total pools of both aspartate and glutamate, compar-
ably across cell lines (Supplementary Fig. 6d). Interestingly, treatment
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with ACLYI did not reduce asparate total levels across all renal cells
even though the percentage of aspartate m+3 was halved in these
conditions (Supplementary Fig. 6e, f), indicating that ACLY is not a
major contributor of cytosolic aspartate generation in our conditions.
Overall, these results indicate that while glutamine is an important

source of the carbons of aspartate and glutamine, BCAA are essential
nitrogen donours for these metabolites, especially in cancer cell lines.

We then investigated the molecular mechanisms underpinning
the dysregulation of BCAA metabolism in ccRCC. VHL loss is a key
driver in ccRCC formation, and through activation of HIFs, it is

Fig. 3 | ocEAn, a tool to visualize metabolic changes in cancer cells.
a Representative scatter plot generated using ocEAn for BCAT1 in the indicated
comparisons. Metabolites upstream and downstream of BCAT1 directly or indir-
ectly linked to reaction are indicated in two separate plots, one (on top) for con-
version of leucine in ketoisocaproic acid (KIC), the other (on the bottom) for the
transamination of α-ketoglutarate (aKG) to glutamate. The dot size represents the
multiplication of the t-valuewith theweighted distance index (distance index being
the number of the x-axis). y-axis reports the t-value of the abundances for the
metabolites indicated in BCAT1 footprint including if they are accumulated or

depleted upstream or downstream. The most relevant metabolites are highlighted
in green. For the scatter plot generation, the methymalonylcarnitine+succi-
nylcarnitine metabolite was annotated as methylmalonylcarnitine only.
b Proportion of total pool of the indicated labeledmetabolites originating from 13C
leucine + isoleucine in all renal cells at the indicated time points. Data represent the
mean of 5 independent cultures ± SD. p-values were calculated using one-way
ANOVA with multiple comparisons and indicated in the graph for the comparisons
HK2 vs. other biological groups at the given time point.
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responsible for the metabolic and bioenergetic reprogramming of
renal cancer14. There is also evidence that under hypoxia, both HIF1A
and HIF2A can transcriptionally regulate some of the genes of the
BCAA catabolism such as BCAT1 and SLC7A5 in different tumor
types41–43. Therefore, we investigatedwhether the rewiring of the BCAA
catabolism in ccRCC depends on VHL loss. To address this question,
we re-expressed wild-type VHL in 786-O and 786-M1A cells (Supple-
mentary Fig. 7a). VHL expression restored mitochondrial respiration
(Supplementary Fig. 7b) and increased aspartate level (Supplementary
Fig. 7c). Next, we performed an enrichment analysis to identify which
pathways are differentially regulated by VHL using additional pro-
teomics data. Surprisingly, we found that BCAA catabolism is one of
themost upregulated pathways in both 786-O and 786-M1A cells upon
VHL restoration (Fig. 5a, b). As a consequence of the VHL-mediated
transcriptional reprogramming, 786-O+VHL and 786-M1A +VHL cells
showed significant suppression of C5 carnitines but not C3-carnitines
accumulation (Fig. 5c), however no changes were observed in the C5-
carnitines or KIC labelling patterns derived from 13C6 leucine upon VHL

re-expression (Fig. 5d and Supplementary Fig. 7d). Moreover, we
observed that VHL restoration induced almost 50% suppression of
SLC7A5, the BCAA main transporter (Fig. 5e). Together with the re-
expression of key proteins that belong to BCAA catabolism (Fig. 5b),
the reduction of SLC7A5mRNAuponVHL re-expression confirmed that
VHL loss is involved, at least in part, in the reprogramming of the BCAA
degradation in renal cancer cells.

We then focused on the metabolic changes specific to the tran-
sition toward metastasis in the 786-O cellular model. As mentioned
previously, ocEAn identified argininosuccinate as one of the key
upregulated metabolites in metastatic cells compared to 786-O
downstream of BCAT1 (Fig. 3a). Importantly, the nitrogen tracing
experiments revealed the unexpected finding that the nitrogen from
BCAAs was channeled into the biosynthesis of arginine through
labeled aspartate, which is required to generate argininosuccinate by
ASS1, in the metastatic 786-M1A and 786-M2A cells but not in normal
HK2 or 786-O cells (Fig. 6a and Supplementary Fig. 5a). Of note, the
abundance of labeled argininosuccinate is higher in the metastatic
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cells compared to HK2 (Fig. 6a). Since ASS1 is known to be suppressed
in 786-O and ccRCC23, we hypothesized that ASS1might be reactivated
in metastatic 786-M1A and 786-M2A cells. Accordingly, we detected
higher ASS1 protein levels in metastatic cells compared to 786-O, with
a mild increase in ASL levels even though not statistically significant,

while ARG2 was strongly suppressed, as shown before23 (Supplemen-
tary Fig. 8a). To evaluate the specificity of ASS1 re-expression in the
metastatic cells, we first focused on the metabolic genes differentially
expressed between primary 786-O and metastatic 786-M1A cells cul-
tured in Plasmax, using RNA-seq data (Fig. 6b). This analysis revealed
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that ASS1 was among the top upregulated metabolic genes in the
metastatic cells together with Aldo-Keto Reductase Family 1 Member
(AKR1B1), Aldehyde Dehydrogenase 2 (ALDH2) and Glucose-6-
phosphate dehydrogenase (G6PD). We confirmed that ASS1 protein
levels are restored in 786-derived metastatic cells using Western blot
(Supplementary Fig. 8b) and that ASS1 expression was associated with
increased intracellular levels of argininosuccinate in 786-M1A and 786-
M2A cells (Fig. 6c)when compared to 786-Ocells. Despite a differential
regulation of ASS1 among all the renal cell lines, we did not detect
differences in the arginine uptake, except for 786-M2A cells, where it
was considerably reduced compared to HK2. We also observed a
higher release of ornithine in HK2 cells, while citrulline was selectively
taken up only by themetastatic cells, whichmight be linked to ASS1 re-
expression and its requirement for argininosuccinate biosynthesis
(Supplementary Fig. 8c).

Next, we investigated how ASS1 expression was controlled in
these cell lines. Based on previous reports showing hypermethyla-
tion of the ASS1 promoter region and consequent gene suppression
in different tumor types44–49, we hypothesized that changes in
methylation of ASS1 promoter might control ASS1 expression. Thus,
we focused on a CpG island (hg38-chr9:130444478–130445423)
that overlaps with the transcription starting site (TSS) of the gene
(GRch38 chr9:130444200–130447801) and we measured its
methylation using TruSeq Methyl Capture EPIC. We observed a gain
of methylation at several CGs within this CpG island in 786-O, where
ASS1 is suppressed, while the same region is relatively hypomethy-
lated in metastatic 786-M1A similarly to HK2 cells (Fig. 6d), where
the gene is highly expressed. The treatment of 786-O with
5-azacitidine (5AC), a DNA demethylating agent, significantly
increased ASS1 expression, supporting the hypothesis that ASS1 is
epigenetically suppressed in primary renal cancer cells (Fig. 6e).
Furthermore, we detected a strong peak of H3K27ac present at ASS1
TSS in 786-M1A cells, which reflects the increased transcription of
the gene (Supplementary Fig. 8d).

Next, we assessed if the reactivation of ASS1 is a common phe-
nomenon associated with the selection of metastatic cells by deter-
mining ASS1 expression in the metastatic counterparts of OS-RC-2, the
OS-LM1 cells, which were generated previously27 (Fig. 2a). However, in
this differentmetastaticmodel, ASS1mRNA ismarginally upregulated in
metastatic OS-LM1 compared to OS-RC-2 (Supplementary Fig. 8e) even
though ASS1 was strongly suppressed in both ccRCC cells when com-
pared to HK2 cells at the protein level (Supplementary Fig. 8f). Similarly
to 786-O, the CpG island overlapping with the ASS1 TSS is strongly
hypermethylated inOS-RC-2, althoughwedidnot observe any change in
its methylation levels in OS-LM1 (Supplementary Fig. 8g). We confirmed
that ASS1 is epigenetically controlled by methylation in these cells since
the treatmentwith 5AC leads to the re-expressionof thegene inboth cell
lines (Supplementary Fig. 8h). Together, these data suggested that ASS1
is epigenetically controlled in some but not all metastatic renal cancer
cells. Therefore, ASS1 upregulation might be present in a portion of
advanced ccRCC tumors. To further corroborate this hypothesis, we
analyzed changes in ASS1 expression in human tumors from the TCGA
RNA-seq dataset. Based on ASS1 expression, we identified a cluster of
advanced ccRCC (ASS1high around 10%of the total cohort of cancers from
stage III + IV) in which ASS1 is significantly upregulated compared to
stage I + II tumors, consistentlywith thephenotypeobserved in 786-M1A
cells (Supplementary Fig. 9a). Intriguingly, this group of tumors is
characterized by distinctive metabolic phenotype (Supplementary
Fig. 9b), including upregulation of glycine, serine, and threonine meta-
bolism, aspartate and glutamate metabolism, and OXPHOS, which
strongly diverged from ASS1low stage III + IV tumors (Supplementary
Fig. 9b). Finally, wemeasured the accumulation of argininosuccinate in a
small cohort (N= 18) of primary ccRCC from patients that were meta-
static at the time of diagnosis. Some of the these tumors showed an
increase in argininosuccinate levels compared tomatchedhealthy tissue

(Supplementary Fig. 9c), suggesting that ASS1 expression in advanced
ccRCC might be heterogeneous. To corroborate the hypothesis that
ASS1 expression might be heterogenous in ccRCC we analyzed single-
cell data available from a cohort of ccRCC tumors from patients17.
Intriguingly, as shown in Supplementary Fig. 9d, even though the overall
expression of ASS1 is reduced in the tumor epithelial cells (red com-
partment) compared to renal proximal tubuli (green compartment), a
few clones positive for ASS1 expression are present even within the
tumor. These data suggest that the expression of ASS1 we observed in
metastatic ccRCC might be the result of clonal selection, potentially
driven by environmental cues through tumor progression.

It has been proposed that the suppression of ASS1 induces argi-
nine auxotrophy, sensitizing cancer cells to arginine depletion50,51.
Our results suggest that primary and metastatic cells may exhibit
different sensitivity to arginine depletion. Consistently, we found that
the metastatic 786-M1A and 786-M2A cells were resistant to arginine
depletion using the pegylated arginine deiminase (ADIPEG20), as a
consequence of the restoration of ASS1 in these cells (Fig. 6f). Given
that ASS1 expression confers the cells with the ability to survive in the
absence of arginine, we hypothesized that the depletion of arginine
might regulate ASS1 expression in the renal cancer cells. Therefore,
we chronically treated 786-O cells, where ASS1 is suppressed, with
ADIPEG20. Initially, the cells stopped proliferating until some sub-
clones, resistant to the treatment, started to emerge. ASS1 expression
was upregulated in this population at mRNA level, corroborating the
hypothesis of a pro-survival role of ASS1 when arginine is rate-limit-
ing, accompanied by a significant increase in the expression of the
metastasis mediator CXCR4 (Fig. 6g). Based on these results, we
hypothesized that during tumor progression, renal cancer cells might
be exposed to microenvironments that differ in arginine content. To
corroborate this hypothesis, we measured the arginine levels in dif-
ferent mouse organs and their tissue interstitial fluids, focusing on
comparing the kidneys and the lungs, the organ colonized by the
metastatic population. Strikingly, arginine levels were significantly
reduced in both the tissue and the interstitial fluid in the lungs
compared to the kidneys (Supplementary Fig. 9e), suggesting that
differences in arginine availability might directly contribute to the
selection of metastatic subpopulations that re-express ASS1 in
the lungs.

Finally, we assessed whether ASS1 re-expression contributes to
themetastatic features of this cell line.We observed that in 786-O cells
treated chronically with ADIPEG20, ASS1 increased expression was
associated with CXCR4 increase (Fig. 6g). On the other hand, silencing
of ASS1 (Fig. 7a) did not affect the proliferation of 786-M1A (Fig. 7b),
but it strongly impaired the invasive growth of spheroids in collagen I
matrixes, indicating that ASS1 is required for the invasion and migra-
tion of metastatic cells in vitro (Fig. 7c). Based on the resistance to
arginine depletion and the effects of ASS1 silencing in vitro, we tested
its effect onmetastatic colonization and survival in vivo. Indeed, when
injected into the tail vein of immunocompromised mice, 786-M1A +
shASS1#1 and 786-M1A + shASS1#2 cells lost the ability to generate
metastasis in the lungs (Fig. 7d–g). Thus, we confirmed that ASS1
expression is necessary for ccRCC cells to maintain their invasiveness
in vitro and colonize the lung in vivo.

Based on the high contribution of glutaminolysis to both gluta-
mate and asparatate pools (Supplementary Fig. 6) and the key role of
the aspartate levels for the growth of tumors, especially under
hypoxia37, we evaluated also if glutaminolysis contributes to invasion
of ccRCC in vitro, measuring the invasive growth of spheroids derived
from all cell types in the presence of GLSI and ACLYI. Even though we
observed thatboth compounds significantly suppress theproliferation
of all renal cells (Supplementary Fig. 10a, c), intriguingly, they did not
impair the invasion of 786-M1A cells (Supplementary Fig. 10b, d).
These results suggest that growth and invasion may be supported by
distinct metabolic programs.
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Discussion
Metabolic reprogramming is a hallmark of cancer4,52 and in recent
years, there have been significant efforts to map the metabolic land-
scape of different tumor types4,7. However, how cancer cells gain
metabolic flexibility and its biological impact through tumor evolution
is still largely unknown.

In this study, we exploited a panel of cell lines, including renal
cells, tumoral and their metastatic derivatives, cultured under phy-
siological nutrient conditions to model the metabolic phenotype of
renal cancer through its progression. Of note, even though we used

only one normal epithelial renal cell line, HK2 cells are an an estab-
lished cell line used in the majority of renal cancer studies and their
metabolic phenotype closely resembles that normal renal tissue. Using
this approach, we identified BCAA catabolism as one of the metabolic
pathways strongly reprogrammed in renal cancer cells, whose tran-
scriptional rewiring is sensitive to VHL restoration. Our findings are
consistent with other works showing that hypoxia suppresses the
BCAA catabolism in certain tissues53 but upregulates the expression of
SLC7A5 and BCAT141–43 in different tumor types. By combining meta-
bolomic labeling experiments and a novel computational tool (ocEAn),
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Fig. 7 | ASS1 supportsmetastatic invasion in vitro and in vivo. aWestern blot of
the ASS1 levels in cells stably cultured in Plasmax upon ASS1 silencing using two
different shRNA constructs. Calnexin was used as an endogenous control.
bMeasurement of 786-M1A cell proliferation after silencing of ASS1 using Incucyte.
Confluency values are shown as phase image sharpness calculated through Incu-
cyte software ± S.E.M. N = 3 independent experiments. c Representative images of
the indicated cell lines at time 0 and after 48h (left) upon growth as spheroids in
collagen (area marked in red). Pictures were obtained from Incucyte. Scale bar is
500 μm. Quantification of the cell spreading area in the collagen matrix at 48h is
represented as mean± S.E.M from N = 3 independent experiments. Statistical sig-
nificance was calculated using two-tailed one-sample t-test (null hypothesis

ratio = 1). d Normalized lung photon flux from the lungs of 5 mice post tail-vein
inoculation of 300,000 cells for the indicated cell types. Data are shown asmeanof
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images of human vimentin/hematoxylin immuno-histochemistry of mouse lung
sections after inoculation of cells in the tail vein for the indicated cell types. Scale
bar is 200μm.
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we studied the regulation of the BCAA catabolism in renal cancer cells,
demonstrating that it functions as a nitrogen reservoir for de novo
biosynthesis of amino acids, especially aspartate and asparagine
through BCAT transamination. Strikingly, under nutrient deprivation,
renal cancer cells are capable to derivemore than 60% of the aspartate
nitrogen from BCAA transamination. Moreover, BCAT inhibition
impairs the generation of intermediates of nucleotide biosynthesis,
confirming other reports showing that BCAT is important for the
proliferation35 and the survival38 of cancer cells. This metabolic rewir-
ing is likely needed to compensate for the depletion of aspartate
generated by the profound VHL-dependent mitochondrial defect
observed in these cells. The epigenetic suppressionofASS1 could be an
additional metabolic strategy to spare aspartate and divert it to
nucleotide biosynthesis in renal cancer cells as previously shown54. We
also showed that other dysregulated metabolic pathways in ccRCC
tumors such glutaminolysis supply carbons for the biosynthesis of
aspartate further sustaining the proliferation of renal cancer cells
under physiological conditions. However, inhibition of this pathway
does not impair invasion of the cancer cells at least in vitro.

Our study showed that part of the nitrogen derived from BCAA is
channeled into arginine biosynthesis only in the metastatic renal cells.
The integration between the BCAA catabolism and urea cycle enzymes
that emerged from our results bypassing the TCA cycle, was possible
because of a selective epigenetic reactivation of the argininosuccinate
synthase (ASS1) in the metastatic cells. This result was unexpected
since itwas recently shown that bothARG2 andASS1 are frequently lost
in ccRCC through copy number aberrations23. Our findings showed
that at least in a fraction of ccRCC, ASS1 is dynamically regulated and
that its re-expression is necessary for ccRCC to retain full metastatic
potential in vivo and in vitro. The evidence that ASS1 is epigenetically
silenced in other tumor types55 and that arginine deprivation could
trigger reactivation of ASS1 in this condition56 suggests that the re-
expression of ASS1 we observed in the metastatic renal cells might be

driven by changes in arginine availability, an event that might have
occurred at either the primary tumor level or the metastatic site. This
hypothesis is corroborated by the evidence that the lung, one of the
sites mostly colonized by ccRCC metastases, shows a lower level of
arginine, both at tissue and interstitial fluid level, compared to the
kidneys and that ASS1 expression is heterogenous in primary tumors,
with the detection of single-cell clones positive for ASS1 even when
ASS1 is largely suppressed. Based on these results, a potential treat-
ment of ccRCC patients with ADIPEG20, currently in clinical trials in a
range of other cancer types (e.g., lung, liver and pancreatic cancers),
should be carefully monitored since it might favor the selection of
ASS1-proficient andmore aggressive subpopulations from the primary
tumor and could benefit from the combination of ASS1 inhibitors to
target potentially metastatic clones.

In conclusion, we found that upon VHL loss, renal cancer cells
activate a transcriptional rewiring that compensates for the suppres-
sion of the mitochondrial respiration and consequent depletion of
aspartate through coordinated reprogramming of the BCAA catabo-
lism and suppression of ASS1 to sustain proliferation (Fig. 8). This
mechanism is analogous to the activation of alternative metabolic
routes to cope with a mitochondrial defect shown in different tumor
types57–61. Finally, through tumor progression, the reactivation ofASS1,
which is sensitive to the levels of arginine in themicroenvironment and
controlled by DNA methylation, provides the metastatic renal cancer
cells with the selective advantage to channel nitrogen from BCAA to
produce argininewhen this aminoacid is scarce (Fig. 8). Thismetabolic
flexibility is important for metastatic cells to survive in micro-
environments with specific nutrient compositions and effectively
colonize distant tissues.

Methods
All experiments performed in the current study comply with all rele-
vant ethical regulations.
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through the urea cycle and favoring its re-direction towards nucleotide biosynth-
esis. In the metastatic population, ASS1 is epigenetically reactivated, and its
expression is triggered by low levels of arginine in the microenvironment. ASS1
reactivation in the metastatic cells connects the BCAA catabolism reprogramming
to the urea cycle, providing metastatic cells with the capability to derive arginine
from BCAA and to survive in the presence of limiting levels of arginine.
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Cell culture
The human ccRCC 786-O and OS-RC-2 cells were obtained from J.
Massaguè (MSKCC, NY-US) in 2014. Metastatic derivatives 786-M1A,
786-M2A andOS-LM1have been previously described27. HK2 cells were
a gift from the laboratory of Prof. Eamonn Maher (University of Cam-
bridge, UK). All cells were authenticated by short tandem repeat (STR)
and routinely checked for mycoplasma contamination and cultured in
complete Plasmax medium prepared as described before12 or RPMI
(Sigma Aldrich) supplemented with 10% fetal bovine serum (FBS,
Gibco-Thermo Scientific). All cells were cultured and passaged for at
least 3 weeks in an incubator at 37 °C with 5% CO2, to adapt to the
Plasmax composition before starting to perform experiments.
Counting for plating and volume measurement were obtained using
CASY cell counter (Omni Life Sciences). Briefly, cells were washed in
PBS once, then detached using trypsin-EDTA 0.05% (Gibco, Thermo
Scientific).

Cell proliferation measurement
Cell proliferation was analyzed using the Incucyte SX5 by means of
phase contrast sharpness for 4 days, through sulphorhodamine B
(SRB) staining or using crystal violet. For the SRB staining, 2 × 104 cells
were plated onto 12-well plates (3 replicates/experimental condition
for each cell line) and at each time point the cells were washed in PBS
and incubated at 4 °C with 1% TCA solution. After two washes in water
andonce theplatesweredry, thewellswere treatedwith0.057%SRB in
acetic acid for 1 h at room temperature. After two additional washes in
1% acetic acid solution, plates were left to dry. To quantify the differ-
ences in the staining, the SRBwas dissolved in 10mMTris solution and
quantified using TECAN spectrophotometer reading the absorbance at
560 nm. Cell proliferation was quantified using crystal violet staining
as previously described62. Briefly, 5 × 104 cells were plated onto 24-well
plates (at least 3 replicates/experimental conditions for each cell line)
and at each time point, cells were washed with PBS and fixed with 4%
buffered formalin. Once all the time points were collected, the cells
were washed with PBS and incubated with 0.1% crystal violet diluted in
20%methanol. After staining, the plateswerefinally washedwithwater
and dried overnight. To quantify the staining, 0.5ml 10% acetic acid
was added to each well for 30min at RT and the solution absorbance
with the dye was quantified using TECAN spectrophotometer reading
at 595 nm. For the treatment with inhibitors, cells were incubated with
vehicle (DMSO) or BCATI 100μM, GLSI 1μM and ACLYI 10μM,
respectively.

VHL re-expression in ccRCC cells
786-O and 786-M1A ±VHL cells were previously generated29. For
comparison, cells transduced with empty vector (EV) were used. All
cells were selected and then stably grown in RPMI with 2μg/ml pur-
omycin (Gibco, Thermo-Scientific).

LC–MS metabolomics
Steady-state metabolomics. For steady-state metabolomics, 2 × 105

cells were plated the day before onto 6-well plates (5 or 6 replicates for
each cell type) and extracted the day after. The experiment was
repeated 3 times (N = 3). Before extraction, cells were counted using
CASY cell counter (Omni Life Sciences) using a separate counting
plate. After that, cells were washed at room temperature with PBS
twice and then kept in a cold bath with dry-ice and methanol. Meta-
bolite extraction buffer (MEB, 50% LC–MS grade Methanol (Fisher
Scientific, 10284580), 30% LC–MS grade Acetonitrile (Fisher Scientific,
10001334) and 20% ultrapure water) was added to each well following
the proportion 1 × 106 cells/1ml of buffer. HEPES 100ng/ml or Valine-
d8 5μM(CK isotopes, DLM-488) were used as internal standard for the
MEB. After a couple of minutes, the plates were moved to the −80 °C
freezer and kept overnight. The following day, the extracts were
scraped andmixed at 4 °C for 10min. After final centrifugation at max

speed for 10min at 4 °C, the supernatants were transferred into
LC–MS vials.

Tracing experiments. In all, 2 × 105 cells were plated onto 6-well plates
(5 or 6 replicates for each cell type). The day after, the medium was
replaced with fresh one containing the labeled isotopologue metabo-
lite. For 13C6 L-Leucine and

13C6 L-Isoleucine (obtained fromCambridge
Isotopes Laboratories) tracing experiment in Plasmax, cells were
incubated for the indicated short time points or 43 h. For 15N L-Leucine
and Isoleucine (Sigma Aldrich) tracing for 27 h. The labeling experi-
ment with 15N L-Leucine in nutrient-deprived condition was conducted
for 24 h in EBSS containing 2.5% FBS and 380μM of 15N L-Leucine
(Sigma Aldrich). For the 13C5 L-Glutamine (obtained from Cambridge
Isotopes Laboratories) tracing experiments, the cells were cultured in
Plasmaxwith0.65mMof labeled compound in thepresence of vehicle,
GLSI (CB-839, 100 nM) for 23 h or ACLYI (BMS-303141, 10μM) for 8 h.
For tracing experiments with RPMI, cells were incubated with 13C6

L-Leucine, 13C5 L-Valine or 15N2 L-glutamine (obtained from Cambridge
Isotopes Laboratories or SigmaAldrich) for 24 h. In themanuscript, we
presented the labeling patterns derived from 13C6 Leucine for KIC and
C5-carnitine in ccRCC cells + VHL, while only the total pools
from labeling experiments have been used, together with other steady
state experiments, to measure the intracellular levels of aspartate, C3
and C5 carnitines.

Liquid chromatography coupled to mass spectrometry (LC–MS)
analysis. HILIC chromatographic separation of metabolites was
achieved using a Millipore Sequant ZIC-pHILIC analytical column
(5 µm, 2.1 × 150mm) equipped with a 2.1 × 20mm guard column (both
5mmparticle size) with a binary solvent system. Solvent A was 20mM
ammonium carbonate, 0.05% ammonium hydroxide; Solvent B was
acetonitrile. The columnoven and autosampler traywere held at 40 °C
and 4 °C, respectively. The chromatographic gradient was run at a flow
rate of 0.200ml/min as follows: 0–2min: 80% B; 2–17min: linear gra-
dient from 80% B to 20% B; 17–17.1min: linear gradient from 20% B to
80% B; 17.1–22.5min: hold at 80% B. Samples were randomized and
analyzed with LC–MS in a blinded manner with an injection volume
was 5 µl. Pooled samples were generated from an equal mixture of all
individual samples and analyzed interspersed at regular intervals
(every 6–8 samples) throughout the analysis of each experiment as a
quality control (QC).

Metabolites were measured with a Thermo Scientific Q Exactive
Hybrid Quadrupole-Orbitrap Mass spectrometer (HRMS) coupled to a
DionexUltimate 3000UHPLC. Themass spectrometerwas operated in
full-scan, polarity-switching mode, with the spray voltage set to
+4.5 kV/−3.5 kV, the heated capillary held at 320 °C, and the auxiliary
gas heater held at 280 °C. The sheath gas flow was set to 55 units, the
auxiliary gas flowwas set to 15 units, and the sweep gas flow was set to
0 unit. HRMS data acquisition was performed in a range of
m/z = 70–900, with the resolution set at 70,000, the AGC target at
1 × 106, and themaximum injection time (Max IT) at 120ms.Metabolite
identities were confirmed using two parameters: (1) precursor ionm/z
was matched within 5 ppm of theoretical mass predicted by the che-
mical formula; (2) the retention time of metabolites was within 5% of
the retention time of a purified standard run with the same chroma-
tographic method. Chromatogram review and peak area integration
were performed using the Thermo Fisher software Tracefinder version
5.0. Only metabolites with less than 30% relative standard deviation in
the QC samples are included. The peak area for each detected meta-
bolite was then normalized against the total ion count (TIC) of that
sample to correct any variations introduced from sample handling
through instrument analysis. The normalized areas were used as vari-
ables for further statistical data analysis.

For 13C- and 15N- isotope tracing analysis, the theoretical masses of
isotopes were calculated and added to a library of predicted isotopes.

Article https://doi.org/10.1038/s41467-022-35036-4

Nature Communications |         (2022) 13:7830 13



These masses were then searched with a 5 ppm tolerance and inte-
gratedonly if thepeakapex showed less than 1%difference in retention
time from the [U-12C] monoisotopic mass in the same chromatogram.
After analysis of the raw data, natural isotope abundances were cor-
rected using the AccuCor algorithm (https://github.com/lparsons/
accucor).

Mouse tissue and interstitial fluid analysis. Mice of a hybrid C57BL/
6J;129/SvJ background were bred and maintained under pathogen
free conditions at the MRC ARES Breeding Unit (Cambridge, UK).
Animals of about 12 weeks of age were killed by neck dislocation and
blood and tissues were speedily collected and processed for further
analysis. Blood was recovered from the aorta, transferred to EDTA
tubes (MiniCollect, Greiner Bio-One, 450531) and stored at −80 °C.
The tissue samples were split into two: one snap-frozen in liquid
nitrogen and stored at −80 °C until further processing, the second
was used for interstitial fluid extraction using a protocol adapted
fromSullivan et al. (2019)63. After the tissueswereweighed, theywere
rinsed in room temperature saline (150mM NaCl) and blotted on
filter paper (VWR, Radnor, PA, 28298–020). We collected the hearts,
livers, kidneys, and lungs from 8 wild-type mice and homogenized a
piece of the tissue in metabolite extraction buffer using the pro-
portion 25μl/mg of buffer with Precellys Lysing tubes (Bertin
Instruments). After that, extracts were kept in the freezer overnight
and the following day centrifuged twice at max speed at 4 ˚C to
remove the protein precipitates. Equal volumes of supernatants were
spiked in with 13C arginine (Cambridge Isotopes) for quantification of
arginine content. For extraction of the tissue interstitial fluid, we
adapted the protocol from Sullivan et al. (2019)63. Briefly, the organ
was washed in saline solution and then a portion was centrifuged at
for 10min at 4 °C at 106 x g using 20 µmnylon filters (Spectrum Labs,
Waltham, MA, 148134) affixed on top of 2ml Eppendorf tubes. 1 μl of
the eluate was extracted in 45μl of extraction buffer and frozen
overnight. The following day, all extracted were centrifuged twice at
max speed at 4 ˚C to remove the protein precipitates. Supernatants
were finally spiked in with 13C arginine (Cambridge Isotopes) for
arginine quantification.

Patient samples. For the metabolic comparison in Supplementary
Fig. 2a we used the data we generated and published in Dugourd et al.
(2021)9 from renal tumors andmatched healthy tissue. The local ethics
committee of the University Hospital RWTH Aachen approved all
human tissue protocols for this study (EK-016/17). The study was
performed according to the declaration of Helsinki. All patients gave
informed consent. Kidney tissues were sampled by the surgeon from
normal and tumor regions. The tissue was snap-frozen on dry-ice or
placed in prechilled University of Wisconsin solution (#BTLBUW,
Bridge to Life Ltd., Columbia, U.S.) and transported on ice.

The samples used for the metabolomics analysis in Supplemen-
tary Fig. 9cweregeneratedusing frozen tissue fromsurgically resected
clear cell renal cell carcinoma samples that were sourced from an
ongoing ethically approved study of biomarkers in urological disease
(Ethics 03/018, CI V.J.G). From this study, we selected 18 primary
tumors samples collected from patients treated from 2015–2017 and
presenting with metastatic disease. Before processing the samples,
whole frozen tissue areas of tumor were identified and marked by an
uro-pathologist (A.Y.W). After that, samples were extracted for LC–MS
analysis as described before64.

Consumption-release (CoRe) experiments. 1.5 × 105 cells were see-
ded onto a 6-well plate and the experiment was carried as previously
described65. Values represent the mean of five independent cul-
tures ± S.D. and are relative to the metabolite abundance normalized
to biomass dry weight generated (dW) in 24 h after medium back-
ground subtraction.

RNA sequencing
In all, 4 × 105 cells were plated onto 5 replicate 6-cm dishes the day
before the extraction. RNA isolation was carried using RNeasy kit
(Qiagen) following themanufacturer’s suggestions and the eluted RNA
was purified using RNA Clean & Concentrator Kits (Zymo Research).
RNA-seq sample libraries were prepared using TruSeq StrandedmRNA
(Illumina) following the manufacturer’s description. For the sequen-
cing, the NextSeq 75 cycle high output kit (Illumina) was used and
samples spiked in with 1% PhiX. The samples were run using NextSeq
500 sequencer (Illumina).

Analysis. Counts were generated from the read files using the Rsu-
breadpackagewith the hg38 genome build. Gene that had less than 50
counts per sample on average were filtered out. Then, 0 count values
were scaled up to 0.5 (as done in the voomnormalizationprocedure of
the limma R package) and then log2-transformed and normalized with
the VSN R package. Differential analysis was then performed using the
limma R package.

Transcription factor activity from RNA-seq. TF activities were esti-
mated from the limma t-values as gene-level statistics, with the TF-
target regulons from the dorothea v1.3.0 R package and the viper
algorithm. Dorothea regulons were filtered to include TF-target inter-
actions of confidence A, B, C and D. Viper was run with a minimum
regulon size of 5 and eset filter set to FALSE. The resulting TF activity
scores roughly represent how extreme is the average deregulation of a
set of target genes of a given TF, compared to the rest of the genes.

Proteomics analysis
Sample preparation. Cell pellets were lysed, reduced and alkylated in
100 µl of 6M Gu-HCl, 200mM Tris-HCl pH 8.5, 1mM TCEP, 1.5mM
Chloractamide by probe sonication and heating to 95 °C for 5min.
Protein concentration was measured by a Bradford assay and initially
digested with LysC (Wako) with an enzyme to substrate ratio of 1/200
for 4 h at 37 °C. Subsequently, the samples were diluted 10-fold with
water and digested with porcine trypsin (Promega) at 37 °C overnight.
Sampleswere acidified to 1%TFA, clearedby centrifugation (16,000× g
at RT) and ~20 µg of the sample was desalted using a Stage-tip. Eluted
peptides were lyophilized, resuspended in 0.1% TFA/water and the
peptide concentration was measured by A280 on a nanodrop instru-
ment (Thermo). The sample was diluted to 1 µg/5 µl for subsequent
analysis.

Mass spectrometry analysis. The tryptic peptides were analyzed on a
Fusion Lumosmass spectrometer connected to anUltimateUltra3000
chromatography system (both Thermo Scientific, Germany) incor-
porating an autosampler. 5 μL of the tryptic peptides, for each sample,
was loaded on a homemade column (250mm length, 75μm inside
diameter [i.d.]) packedwith 1.8μmuChrom (nanoLCMSSolutions) and
separated by an increasing acetonitrile gradient, using a 150-min
reverse-phase gradient (from 3% to 40% Acetonitrile) at a flow rate of
400nL/min. The mass spectrometer was operated in positive ion
mode with a capillary temperature of 220 °C, with a potential of
2000V applied to the column. Data were acquired with the mass
spectrometer operating in automatic data-dependent switchingmode,
with MS resolution of 240k, with a cycle time of 1 s and MS/MS HCD
fragmentation/analysis performed in the ion trap. Mass spectra were
analyzedusing theMaxQuant Software package in biological triplicate.
Label-free quantification was performed using MaxQuant. All the
samples were analyzed as biological replicates.

Data analysis. Data were analyzed using the MaxQuant software
package. Raw data files were searched against a human database
(Uniprot Homo sapiens), using a mass accuracy of 4.5 ppm and 0.01
false discovery rate (FDR) at both peptide and protein levels. Every
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single file was considered separately in the experimental design; the
replicates of each condition were grouped for the subsequent statis-
tical analysis. Carbamidomethylation was specified as fixed modifica-
tion while methionine oxidation and acetylation of protein N-termini
were specified as variable. Subsequently, missing values were replaced
by a normal distribution (1.8 π shifted with a distribution of 0.3 π) in
order to allow the following statistical analysis. Results were cleaned
for reverse and contaminants and a list of significant changes was
determined based on average ratio and t-test. Intensities were then
normalized using the VSN package and differential analysis was per-
formed with limma (same as for the RNA data). Gene set enrichment
analysis was performed using the FGSEA package and the kegg path-
way ontology (obtained from mSigDB).

In vivo metastatic assay
All animal experiments were performed in accordance with protocols
approved by the Home Office (UK) and the University of Cambridge
ethics committee (PPL PFCB122AA). The housing for the animal
experimental work carried out in this study was controlled by the
animal facility at the University of Cambridge. Chow diet ad libitum
was used during the experiments. For experimental lung metastasis
assays, 300000 cellswere resuspended in 100 µl PBS and inoculated in
the lateral tail vein of 7-week-old female NOD/SCID mice (5 mice/
condition) obtained from Charles River Laboratories. Metastatic
colonization was monitored by IVIS bioluminescence imaging (Perki-
nElmer). At the experimental endpoint, lungs were harvested for
immuno-histochemistry.

Immuno-histochemistry staining (IHC)
Lungs were collected and fixed overnight with neutral formalin 4% and
washed with PBS, 50% ethanol, and 70% ethanol for 15min each. Lungs
were embedded in paraffin, sectioned, and stained with H&E by the
human research tissue bank and histopathology research support
group from the Cambridge University Hospitals-NHS Foundation.
Human Vimentin staining (Cell signaling #5741 1:100) was carried out
using the Bond Max (Leica) using Bon polymer Refine Detection
reagents (Leica) according to the manufacturer’s protocol (IHC pro-
tocol F). Two different lung sections were vimentin-stained and
imaged using Wide Field Zeiss Axio Observer 7 microscope (Zeiss).

Oxygen consumption rate and extracellular acidification rate
measurements
Cellular respiration (Oxygen consumption rate, OCR) was measured
using the real-time flux analyzer XF-24e SeaHorse (Agilent) as descri-
bed before64. Briefly, 6 × 104 cells were plated onto the instrument cell
plate 24 h before the experiment in complete Plasmax medium or
RPMI (at least four replicate wells for each cell line). The following day,
the medium was replaced with fresh Plasmax supplemented with
25mMHEPES (Sigma-Aldrich) to balance pH changes without any pre-
incubation or with Agilent Seahorse XF RPMI with the addition of
glucose, pyruvate and glutamine at the concentration present in nor-
mal RPMI and pre-incubated for 30min at 37 °C. Cells were treated
with 1μM Oligomycin, 4μM FCCP and 1μM Antimycin A (all drugs
were purchased from Sigma-Aldrich).

TCGA KIRC transcriptomic analysis
KIRC RNA-seq counts were downloaded from the TCGA portal. Data
were normalized in several steps. First, counts were log2 transformed.
After visual inspection of the data distribution, any log2 count values
lower than 7.5were converted tomissing values (NAs). Primary tumors
and solid normal tissue samples containing more than 49000 NAs
were removed. Then, genes with 350 or more missing values across
samples were excluded. This yielded a clean data matrix of 593 sam-
ples and 13452 genes. The data was converted back to original count
values so that VSN normalization procedure could be applied.

Groupswere first defined as early-stage tumors (stage I and II) and
late-stage tumors (stage III and IV). ASS1 expression distribution was
visually inspected in each group. Then the late-stage tumor group was
split into two subgroups based on ASS1 expression. We used Gaussian
mixture modeling with the mclust package to model ASS1 expression
across late-stage tumor samples with two Gaussian distributions. This
allowed us to define a group of low expression of ASS1 (177 samples)
and high expression of ASS1 (18 samples, with a probability of sample
belonging to a given distribution of 50%). Limma was used to perform
differential analysis between late-stage tumors that express high/low
ASS1 and early-stage tumors. FGSEA (nperm= 1000) was used with the
resulting limma t-values and KEGG pathway collection (obtained from
msigdb) to perform a pathway enrichment analysis.

Metabolomic enrichment analysis using ocEAn
Pre-processing of metabolomic data
Steady-state metabolomics. Three sets of metabolomic data relative
to cells stably cultured in Plasmax were combined and the batch effect
was removed with the removeBatchEffect function of limma (using a
linearmodel to regress out the batcheffect).We comparedboth 786-O
and 786-M1A to HK2 and 786-M1A vs. 786-O using limma differential
analysis and t-values relative to significant differences were calculated
for each metabolite.

Pre-processing of recon2 reaction network. To run ocEAn, we first
generated a list of metabolites associated with each enzyme. This
information was extracted from the metabolic reaction network,
indicating which metabolites are downstream or upstream of each
reaction. The quality of the metabolic reaction network used to gen-
erate the set is of prime importance, as the choiceof anadequateprior-
knowledge source usually impacts the quality of footprint-based
activity estimations themost.Weused a reducedmanually curated and
thermodynamically proofed version of the Recon2 human metabolic
reaction network to identify metabolites associated with each
reaction66. The thermodynamic proofingwas performed using the TFA
algorithm to exclude reaction directions that were not thermo-
dynamically feasible67,68. To compute the relative position of the
metabolites relative to the enzymes, we first filtered out accessory
elements of the reaction network such as cofactors and over-
promiscuous metabolites (over-promiscuous metabolites are meta-
bolites that are used as reactants by >100reactions). Metabolites
classified as cofactors and nucleotides according to the KEGG BRITE
classification were removed, as well as CO2, ITP, IDP, NADH and all
metabolites composed of less than four atoms. This procedure filtered
out 100 metabolites, bringing the number of metabolites in the reac-
tion network from 421 to 321.

Convert redHuman network into an enzyme-metabolite distance
map. The gene-reaction rules “(“AND” and “OR” which contains the
information about which genes are required for a reaction to occur) of
the metabolic reaction network were used to associate reactants and
products with the corresponding enzymes of each reaction. When
multiple enzymes were associated with a reaction with an “AND” rule,
they were combined as a single entity representing an enzymatic
complex. Then, reactantswere connected to corresponding enzymatic
complexes or enzymes by writing them as rows of a Simple Interaction
Format (SIF) table in the following form: enzyme; 1; product. In this
way, each row of the SIF table represents either activation of the
enzyme by the reactant (i.e., the necessity of the presence of the
reactant for the enzyme to catalyze its reaction) or activation of
the product by an enzyme (i.e., the product presence is dependent on
the activity of its corresponding enzyme). The resultingnetworkallows
to easily follow paths connecting metabolic enzymes with distant
metabolites and can be converted to an enzyme-metabolite graph
(using igraph package in R). The paths have to conserve the
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compartment information of metabolites and reactions, thus enzymes
and metabolites are duplicated and uniquely identified based on each
reaction they are involved in. Finally, since the same enzyme catalyzes
the transformation of different reactions (with variations of reactants
and products), each reaction linked to a metabolic enzyme was
uniquely identified (Supplementary Data 1). This level of resolution
guarantees the correct tracking of a series of reactions from one
metabolite to another without having incoherent jumps between
metabolites catalyzed by the same enzyme.

The enzyme-metabolite graph was used to find the shortest path
between each metabolic enzyme and all the other metabolites of the
network. This is done first following the normal reaction fluxes (to
connect enzymes with direct and indirect metabolic products) and
then following the reversed fluxes (to connect enzymes with direct
and indirect metabolic reactants). This yields a “reaction network
forest”, where each tree has a root corresponding to a specific
metabolic enzyme, and branches represent the metabolites that can
be reached from this enzyme, following normal or reverse reaction
flux directions. Thus, each tree allows us to know if a given meta-
bolite is upstream or downstream of a specific reaction and how
many reaction steps separate them. The next step was associating
each enzyme and all metabolites of the network with weights,
representing the minimum distance of metabolites relative to
enzymes, and a sign representing whether each metabolite is
upstream (−1 to 0) or downstream (0 to 1) of a given enzyme. To
compute a weight, we used a function that progressively decreases
the weight value with the distance in the network. The weight value
starts at 1 for direct reactants and products of a given enzyme and
decreases in a stepwise manner (x_{i + 1} = x_i * penalty, with x_0 = 1
and dissipation parameter ranging between 0 and 1), for each reac-
tion step separating the given metabolite from a given enzyme. In
this study, we used a dissipation parameter of 0.8, which represents a
drop in the weight of a given metabolite to a given enzyme by 20%
per step in the reaction network. This value is arbitrary and was
chosen because it allowed us to generate visually interpretable
metabolic enzyme profiles. Since many cycles are present in the
metabolic reaction network, metabolites are usually both upstream
and downstream of different enzymes. To obtain a weight that
represents the actual relative position of a metabolite relative to a
given enzyme, the upstream and downstream weight of each
metabolite-enzyme association were averaged.

RNA extraction and real-time PCR
In all, 2.5 × 105 cells were plated onto a 6-well plate. The day after, cells
were washed in PBS and then RNA was extracted using RNeasy kit
(Qiagen) following the manufacturer’s protocol. RNA was eluted in
water and then quantified using Nanodrop (Thermo Fisher). 500 ng of
RNA was reverse- transcribed using Quantitect Reverse Transcription
kit. For real-timeqPCR, cDNAwas runusingTaqMan™GeneExpression
Assay (FAM) (Thermo Scientific, catalog n. 4331182 250μl, 20x:
Hs00607978_s1 CXCR4; Hs03046964_s1 VHL; Hs01597989_g1 ASS1;
Hs00427620_m1 TBP; Hs01001189_m1 SLC7A5) and Taqman Fast 2X
master mix (Thermo Scientific). TATA-Box Binding Protein (TBP) was
used as the endogenous control. Data and biological replicates were
analyzed using Expression Suite (Thermo Scientific). Results were
obtained from three independent experiments and presented as
Relative quantification (RQ), with RQmax and RQmin calculated using
SD1 algorithm. p-values were calculated by Expression Suite software.

Treatment of cells with BCAT inhibitor
In all, 2 × 105 cells were plated onto 6-well plates (3 replicates/experi-
mental condition for each cell line). The day after, media was replaced
with fresh one with either the vehicle (DMSO) or 100μM BCATI2,
(ApexBio) for 22 h at 37 °C with 5% CO2 before the metabolite
extraction.

Treatment of cells with DNA demethylation agent
5-azacitidine (5AC)
In all, 1 × 105 786-O and OS-RC-2 cells were plated onto 6-well plates
and incubated with either the appropriate vehicle or the inhibitor
5-Azacitidine, (Sigma-Aldrich) dissolved in DMSO at 200 nM con-
centration for 72 h 37 °C with 5% CO2. Themediumwas replaced every
day with fresh one containing either vehicle or the inhibitor. After a
total of 96 h, cells werewashed in PBS and RNA extracted as described
above for real-time qPCR. The experiment was repeated three
times (N = 3).

Treatment of cells with ADIPEG20
In all, 3 × 104 cells were plated onto 24-well plates (4 replicates/con-
ditions). The day after, pegylated arginine deiminase (ADIPEG20,
Design Rx Pharmaceutical, US) was added at 115 ng/ml concentration
for 72 h. Then, cells were fixed with 1%TCA solution at 4 °C for 10min.
After the plate waswashed twice in water and dried, cells were colored
using SRB staining solution (0.057% in acetic acid) for 1 h at room
temperature. After two washes in 1% acetic acid solution and once dry,
the SRB staining was dissolved in 10mMTris solution and absorbance
quantified using TECAN spectrophotometer at 560 nm. The experi-
ment was repeated four times (N = 4). For chronic treatment, 786-O
cells were plated (5 × 105) onto a T25 flask and treated with ADIPEG20
57.5 ng/ml for 4 weeks. Medium was replaced with fresh ADIPEG20
every 3 days.

Short-hairpin RNA (shRNA) interference experiments
786-M1A were infected with lentiviral particles which were a gift from
Ayelet Erez’s laboratory. The virus was generated transfecting
HEK293T cells with psPAX, pVSVG, which encode for the virus
assembly, and pLKO shGFP, shASS1 vectors (Catalog #: RHS4533-
EG445, GE Healthcare, Dharmacon). Cells were incubated with a
medium containing the lentiviral particles for 24 h. After lentiviral
transduction, cells were selected with puromycin 2μg/ml for 48 h and
then kept at 1μg/ml for downstream experiments.

Invasive growth assay
The invasive growth assay was performed as described previously62,69.
Briefly, cells (1000 cells/drop) were maintained in drops (25 µl/drop)
with Plasmax and 6%methylcellulose (SigmaM0387) on the cover of a
100-mm culture plate. Drops were incubated at 37 °C and 5% CO2 for
72 h. Once formed, spheroids were collected, resuspended in collagen
I solution (Advanced BioMatrix PureCol), and added to 24-well plates.
After 4 h, Plasmaxmediumwas then addedon topof thewell andday0
pictures were taken. Any increase in spheroid area was monitored by
taking pictures with Incucyte SX5 for 48 h or using the EVOS FL Auto
Imaging system on days 0 and 2. For GLS and ACLY inhibitor treat-
ments (CB-839, from Selleck Chemicals 1μM and BMS-303141 from
Merck 10μM) cells were pre-treated for 48 h and 4 h, respectively, in
the presence of the inhibitor or vehicle. For invasive growth quantifi-
cation, an increase in the area occupied by the spheroids between day
0 and day 2 (48 h) was calculated using FiJi software.

DNA methylation analysis
DNA samples (10 ng/µl, 500 ng total) were sheared using the S220
Focused-ultrasonicator (Covaris) to generate dsDNA fragments. The
D1000 ScreenTape System (Agilent) was used to ensure >60% of DNA
fragments were between 100 and 300bp long, with a mean fragment
size of 180–200bp. Themethylation analysis was performed using the
TruSeq Methyl Capture EPIC Library Preparation Kit (Illumina) using
the manufacturer’s protocol. Twelve samples were pooled for
sequencing on the HiSeq4000 Illumina Sequencing platform (single
end 150bp read) using two lanes per library pool. Technical replicates
were performed for cell line data to assess assay reproducibility
(R2 = 0.97). The readswere trimmed (TrimGalore v0.4.4), aligned to the
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bisulfite converted human reference genome (GRCh38/hg38) and
methylation calling was performed using Bismark (v0.22.1) using
standard parameters. Quality control (QC) reports were compiled
using FastQC (0.11.4) and MultiQC (v1.7). The position of the CpG
island (hg38-chr9:130444478–130445423) overlapping with the TSS of
ASS1 (GRch38 chr9:130444200–13044780) was obtained from
Ensembl.

Chromatin immunoprecipitation and sequencing (ChIP-seq)
ChIP experiments were generated and described previously29.

Protein lysates and western blot
In all, 6 × 105 cells were plated onto 6-cm dishes. The day after, cells
were washed in PBS and then lysed on ice with RIPA buffer (150mM
NaCl, 1%NP-40, Sodium deoxycholate (DOC) 0.5%, sodium dodecyl
phosphate (SDS) 0.1%, 25mM Tris) supplemented with protease and
phosphatase inhibitors (Protease inhibitor cocktail, Phosphatase inhi-
bitor cocktail 2/3, Sigma-Aldrich) for 2min. Cells extractswere scraped
and then sonicated for 5min (30 s on, 30 s off) using Bioruptor soni-
cator (Diagenode) and theprotein contentwasmeasuredusingBCAkit
(Pierce) following the manufacturer’s instructions. Absorbance was
readusing TECAN spectrophotometer at 562 nm. 30–50μgof proteins
were then heated at 70 °C for 10min in Bolt Loading buffer 1x (Thermo
Scientific) containing 4% β-mercaptoethanol. Then, the samples were
loaded into 4–12% Bis-Tris Bolt gel and run at 160 V constant for 1 h in
Bolt MES 1X running buffer (Thermo Scientific). Dry transfer of the
proteins to a nitrocellulose membrane was done using IBLOT2
(Thermo Scientific) for 12min at 20 V. Membranes were incubated in
blocking buffer for 1 h (either 5% BSA or 5% milk in TBS 1x +0.01 %
Tween-20, TBST 1X). Primary antibodies were incubated in blocking
buffer ON at 4 °C. Calnexin antibody was purchased from Abcam
(ab22595, used at 1:1000 dilution), ASS1 from Abcam (ab124465 used
at 1:500 dilution). The day after, the membranes were washed three
times in TBST 1X and then secondary antibodies (conjugated with 680
or 800nm fluorophores, IRDye® 800CW Goat anti-Mouse IgG cat.
926–32210; IRDye® 800CW Goat anti-Rabbit IgG cat. 926–32211;
IRDye® 680LT Goat anti-Mouse IgG cat. 926–68020; IRDye® 680LT
Goat anti-Rabbit IgG cat. 926–68021 purchased fromLI-COR) incu-
bated for 1 h at roomtemperature at 1:2000dilution inblockingbuffer.
Images were acquired using Image Studio lite 5.2 (Li-Cor) on Odyssey
CLx instrument (LI-COR).

Analysis of ccRCC single-cell RNA-seq dataset
A single-cell ccRCCdatasetwas obtained from:https://doi.org/10.1126/
science.aat1699.

The data of three ccRCC patients were analyzed with the
scanpy python package. We filtered and normalized the data fol-
lowing the default parameters of the scanpy tutorial (filter out
cells with less than 200 unique genes, filter out genes expressed in
less than 3 cells, filter out cells with more than 5% mitochondrial
gene counts). Data were summarized in lower dimensional space
using UMAP dimensionality reduction. Finally, compartments
(cell types, as defined in the original publication) and ASS1
expression were plotted on the first two UMAP components. All
the analysis codes are available in a markdown at: https://github.
com/saezlab/marco_kidney_singlecell/blob/main/scripts/CCRCC_
ASS1_final/CCRCC_ASS1_final.md

Statistics and reproducibility
Graphs were generated using Graphpad Prism 8–9. The statistical
analysis was performed using Prism software through either unpaired/
paired t-test or one-way ANOVA using Dunnets’s, Sidak’s or Tukey’s
tests for multiple comparisons. For the one-way ANOVA analysis,
gaussian distribution and equal SD were assumed. For real-time qPCR,
the statistical analysis was performed using Expression Suite software

(Thermo Scientific) using SD algorithm on three independent experi-
ments. The reproducibility of the experimentalfindingswas supported
by performing independent experiments (usually n = 3) or by having
several independent culture replicates (replicate wells/dishes) as
reported in the figure legends. Furthermore, additional experiments
were conducted in other relevant cell lines to validate the main find-
ings of the study. Western blot experiments were repeated more than
once or validatedwith other techniques (qPCR ormulti-omic analysis).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq raw files are available on Gene Expression Omnibus
(GSE217211), while proteomic raw files are available on PRIDE
(PXD037464). Metabolomics raw files are available on Metabolomics
Workbench (project PR001418) andMetaboLights (studyMTBLS5615).:
All source data used to generate the figures presented in this study,
including uncropped western blot images are provided in the Source
Data file. Source data are provided with this paper.

Code availability
All data and script for the analysis including ocEAn package are avail-
able at: https://zenodo.org/badge/latestdoi/395034170 and at https://
github.com/saezlab/Sciacovelli_Dugourd_2021_paper. Whole network
result visualization based on the ocEAn analysis of the metabolomics
data is available at: https://sciacovelli2021.omnipathdb.org.
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