30 research outputs found

    Flexible Micro Thermoelectric Generator based on Electroplated Bi2Te3

    Get PDF
    We present and discuss the fabrication process and the performance of a flexible micro thermoelectric generator with electroplated Bi2Te3 thermocouples in a SU-8 mold. Demonstrator devices generate 278uWcm-2 at dTmeas=40K across the experimental set up. Based on model calculations, a temperature difference of dTG=21.4K across the generator is assumed. Due to the flexible design and the chosen generator materials, the performance stays high even for curved contact surfaces. The measurement results correlate well with the model based design optimization predictions.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Introduction

    No full text

    Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization

    No full text
    Actin, one of the most highly conserved and abundant eukaryotic proteins, is constantly being polymerized and depolymerized within cells as part of cellular motility, tissue formation and repair, and embryonic development. Many proteins exist that bind to monomeric or filamentous (F) forms of actin to regulate the polymerization state. It has become increasingly apparent that the ability of different proteins to bind to and regulate actin filament dynamics depends on the ability of the filament to exist in altered conformations. Yet, little is known about how these conformational changes occur at the molecular level. We have destabilized F-actin filaments by forming a disulfide that locks the “hydrophobic plug” to the body of the actin subunit or by altering the C terminus of actin with a tetramethylrhodamine label. We also examined F-actin filaments at short times after the initiation of polymerization. In all three cases, a substantial fraction of protomers can be found in a “tilted” state that also is induced by actin depolymerizing factor/cofilin proteins. These observations suggest that F-actin filaments are annealed over time into a stable filament and that actin-depolymerizing proteins can effect a time reversal of polymerization

    Remodeling of actin filaments by ADF/cofilin proteins

    No full text
    Cofilin/ADF proteins play key roles in the dynamics of actin, one of the most abundant and highly conserved eukaryotic proteins. We used cryoelectron microscopy to generate a 9-Å resolution three-dimensional reconstruction of cofilin-decorated actin filaments, the highest resolution achieved for a complex of F-actin with an actin-binding protein. We show that the cofilin-induced change in the filament twist is due to a unique conformation of the actin molecule unrelated to any previously observed state. The changes between the actin protomer in naked F-actin and in the actin-cofilin filament are greater than the conformational changes between G- and F-actin. Our results show the structural plasticity of actin, suggest that other actin-binding proteins may also induce large but different conformational changes, and show that F-actin cannot be described by a single molecular model
    corecore