955 research outputs found
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier
Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e., mineral dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the effects of melt and accumulation processes on the impurity concentration at the surface and thus on albedo and glacier mass balance. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 depending on the location on the glacier. Consequently, annual melt was increased by 15–19 %, and the mean annual mass balance was reduced by about 280–490 mm w.e. BC clearly dominated absorption which is about 3 times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust and BC-enriched layers due to frequent years with negative mass balances
The transport history of two Saharan dust events archived in an Alpine ice core
International audienceMineral dust from the Saharan desert can be transported across the Mediterranean towards the Alpine region several times a year. When coinciding with snowfall, the dust can be deposited on Alpine glaciers and then appears as yellow or red layers in ice cores. Two such significant dust events were identified in an ice core drilled at the high-accumulation site Piz Zupó in the Swiss Alps (46°22' N, 9°55' E, 3850 m a.s.l.). From stable oxygen isotopes and major ion concentrations, the events were approximately dated as October and March 2000. In order to link the dust record in the ice core to the meteorological situation that led to the dust events, a novel methodology based on back-trajectory analysis was developed. It allowed the detailed analysis of the specific meteorologic flow evolution that was associated with Saharan dust transport into the Alps, and the identification of dust sources, atmospheric transport paths, and wet deposition periods for both dust events. Differences in the chemical signature of the two dust events were interpreted with respect to contributions from the dust sources and aerosol scavenging during the transport. For the October event, the trajectory analysis indicated that dust deposition took place during 13?15 October 2000. Mobilisation areas of dust were mainly identified in the Algerian and Libyan deserts. A combination of an upper-level potential vorticity streamer and a midlevel jet across Algeria first brought moist Atlantic air and later mixed air from the tropics and Saharan desert across the Mediterranean towards the Alps. The March event consisted of two different deposition phases which took place during 17?19 and 23?25 March 2000. The first phase was associated with an exceptional transport pathway past Iceland and towards the Alps from northerly directions. The second phase was similar to the October event. A significant peak of methanesulphonic acid associated with the March dust event was most likely caused by incorporation of biogenic aerosol while passing through the marine boundary layer of the western Mediterranean during a local phytoplankton bloom. From this study, we conclude that for a detailed understanding of the chemical signal recorded in dust events at Piz Zupó, it is essential to consider the whole transport sequence of mineral aerosol, consisting of dust mobilisation, transport, and deposition at the glacier
Predicting protein functions with message passing algorithms
Motivation: In the last few years a growing interest in biology has been
shifting towards the problem of optimal information extraction from the huge
amount of data generated via large scale and high-throughput techniques. One of
the most relevant issues has recently become that of correctly and reliably
predicting the functions of observed but still functionally undetermined
proteins starting from information coming from the network of co-observed
proteins of known functions.
Method: The method proposed in this article is based on a message passing
algorithm known as Belief Propagation, which takes as input the network of
proteins physical interactions and a catalog of known proteins functions, and
returns the probabilities for each unclassified protein of having one chosen
function. The implementation of the algorithm allows for fast on-line analysis,
and can be easily generalized to more complex graph topologies taking into
account hyper-graphs, {\em i.e.} complexes of more than two interacting
proteins.Comment: 12 pages, 9 eps figures, 1 additional html tabl
Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs
The Transversal problem, i.e, the enumeration of all the minimal transversals
of a hypergraph in output-polynomial time, i.e, in time polynomial in its size
and the cumulated size of all its minimal transversals, is a fifty years old
open problem, and up to now there are few examples of hypergraph classes where
the problem is solved. A minimal dominating set in a graph is a subset of its
vertex set that has a non empty intersection with the closed neighborhood of
every vertex. It is proved in [M. M. Kant\'e, V. Limouzy, A. Mary, L. Nourine,
On the Enumeration of Minimal Dominating Sets and Related Notions, In Revision
2014] that the enumeration of minimal dominating sets in graphs and the
enumeration of minimal transversals in hypergraphs are two equivalent problems.
Hoping this equivalence can help to get new insights in the Transversal
problem, it is natural to look inside graph classes. It is proved independently
and with different techniques in [Golovach et al. - ICALP 2013] and [Kant\'e et
al. - ISAAC 2012] that minimal edge dominating sets in graphs (i.e, minimal
dominating sets in line graphs) can be enumerated in incremental
output-polynomial time. We provide the first polynomial delay and polynomial
space algorithm that lists all the minimal edge dominating sets in graphs,
answering an open problem of [Golovach et al. - ICALP 2013]. Besides the
result, we hope the used techniques that are a mix of a modification of the
well-known Berge's algorithm and a strong use of the structure of line graphs,
are of great interest and could be used to get new output-polynomial time
algorithms.Comment: proofs simplified from previous version, 12 pages, 2 figure
Sources and distribution of trace species in Alpine precipitation inferred from two 60-year ice core paleorecords
International audienceThe Alps represent the largest barrier to meridional air flow in Europe, strongly influencing the weather and hence the distribution of atmospheric trace components. Here for the first time, chemical records from two ice cores retrieved from glaciers located in the northern and southern Swiss Alps were compared in conjunction with an analysis of "weather type", in order to assess geographical and seasonal trends in the deposition of trace species and to identify source regions and transport patterns. Using a correlation analysis, investigated trace species (NH4+, NO3?, SO42?, Ca2+, Mg2+, Na+, K+, and Cl? were grouped into classes of different origin (anthropogenic, sea salt, or Saharan dust). Over the last 60 years, precipitation chemistry at both sites was dominated by NH4+, NO4?, and SO42?, all of anthropogenic origin and deposited mainly in summer by way of convective precipitation. The similarity of the SO42? profiles with historical records of SO4 emissions from France and Italy indicated these two countries as key source areas for the anthropogenic species. In contrast, sea salt and Saharan dust showed major differences in transport pattern and deposition across the Alps. Currently, the sea-salt constituents Na+, K+, and Cl? are transported to the northern site during advective westerly-wind situations, independent of Saharan dust events. At the southern site, sea salt and Saharan dust are deposited simultaneously, indicating a coupled transport active mainly in summer during south-westerly wind situations
Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and analysis of the events during the years 2001 and 2002
International audienceScattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580 m a.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo is usually positive, it becomes negative during Saharan dust events (SDE) due to the greater size of the mineral aerosols and to their different chemical composition. This change in the sign of the single scattering exponent turns out to be a simple means for detecting Saharan dust events. The occurrence of SDE detected by this new method was largely confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22 months period shows that SDE are more frequent during the March?June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5 h with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48 h total suspended particulate matter (TSP) at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the JFJ is 16 ?g/m3, which corresponds to an annual mean of 0.8 ?g/m3 or 24% of TSP
Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador
International audienceThe comparison of two shallow ice cores recovered in 1999 and 2000 from the same place on the Chimborazo summit glacier revealed the influence of the coincident Tungurahua volcanic eruption on their stable isotope and chemical records. The surface snow melting and water percolation induced from the ash deposition caused a preferential elution and re-localization of certain ionic species, while the stable isotope records were not affected. Additionally, the comparison of the ionic amount and some selected ion ratios preserved along the ice core column reports under which processes the chemical species are introduced in the snow pack, as snow flake condensation nuclei, by atmospheric scavenging or by dry deposition. This preliminary study is essential for the interpretation of the deep Chimborazo ice core, or for other sites where surrounding volcanic activity influences the glaciochemical records
Analytical Chemistry in High-Alpine Environmental Research
Snow and ice chemistry studies in the high-altitude regions of the Alps give insight into present and past atmospheric chemistry. Impurities found in snow originate from atmospheric aerosol particles or reactive trace gases and, thus, represent a broad spectrum of chemical species such
as water-soluble inorganic and organic ions, insoluble minerals, organic components, soot, trace metals, etc. Consequently, a variety of analytical techniques need to be applied in snow chemistry studies, including ion chromatography, inductively coupled plasma optical emission or mass
spectrometry, atomic absorption spectrometry etc. A few details of the respective methods used in our laboratory are discussed here. Since snow samples are characterised by low impurity concentrations, they are particularly sensitive with respect to stability and contamination. Thus,
special care in sample handling is required. Investigations of the geographical, seasonal and year-to-year variations of the concentrations and deposition fluxes of major ionic species were carried out in the Alps. Concentrations of ammonium, nitrate and sulphate showed a West to East increase,
which was, however, not reflected in the total flux, since precipitation heights exhibited an opposite pattern. Long-term records from an alpine glacier revealed substantial increases of sulphate, ammonium, nitrate, and lead in the course of the last 100 years
A multi-proxy approach for revealing recent climatic changes in the Russian Altai
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779-2007 and cell wall thickness (CWT) for 1900-2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstructio
- …
