949 research outputs found

    A first principles simulation of rigid water

    Full text link
    We present the results of Car-Parrinello (CP) simulations of water at ambient conditions and under pressure, using a rigid molecule approximation. Throughout our calculations, water molecules were maintained at a fixed intramolecular geometry corresponding to the average structure obtained in fully unconstrained simulations. This allows us to use larger time steps than those adopted in ordinary CP simulations of water, and thus to access longer time scales. In the absence of chemical reactions or dissociation effects, these calculations open the way to ab initio simulations of aqueous solutions that require timescales substantially longer than presently feasible (e.g. simulations of hydrophobic solvation). Our results show that structural properties and diffusion coefficients obtained with a rigid model are in better agreement with experiment than those determined with fully flexible simulations. Possible reasons responsible for this improved agreement are discussed

    Focal neuromyotonia: do I love you?

    Get PDF
    We present a rare case of focal neuromyotonia in a 73-year-old woman with a follow up of 5years. The clinical picture showed a fixed contraction of the 3rd and 4th finger of the left hand. Similar to other published cases, our patient suffered from COPD and was treated with beta-2-sympathomimetics. This clinical picture shows a rare but rather salient differential diagnosis of Dupuytren's contracture. EMG of the affected muscles may yield a diagnosis and prevent the patient from a long and ineffective treatment "odyssey

    Mass-radius relationships for exoplanets

    Full text link
    For planets other than Earth, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key materials whose equation of state is reasonably well established, and for differentiated Fe/rock. We find that variations in the equation of state, such as may arise when extrapolating from low pressure data, can have significant effects on predicted mass- radius relations, and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth- like,' likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra "rock" compositions. Responded to referee comment

    Detecting subgroups in social participation among individuals living with spinal cord injury:a longitudinal analysis of community survey data

    Get PDF
    STUDY DESIGN: Longitudinal community survey. OBJECTIVES: To determine subgroups in social participation of individuals living with spinal cord injury (SCI). SETTING: Community. METHODS: Data were collected in 2012 and 2017 as part of the community survey of the Swiss Spinal Cord Injury cohort. Participation was assessed using the 33-item Utrecht Scale of Evaluation of Rehabilitation-Participation evaluating frequency of, restrictions in and satisfaction with productive, leisure, and social activities. Linear mixed-effects model trees were used to distinguish subgroups in participation associated with sociodemographic and lesion characteristics. RESULTS: In all, 3079 observations were used for the analysis, of which 1549 originated from Survey 2012, 1530 from Survey 2017, and 761 from both surveys. Participants were mostly male (2012: 71.5%; 2017: 71.2%), aged on average 50 years (2012: 52.3; 2017: 56.5), with an incomplete paraplegia (2012: 37.5%; 2017: 41.8%) of traumatic origin (2012: 84.7%; 2017: 79.3%). There was limited within-person variation in participation over the 5-year period. Participation varied with age, SCI severity, education, financial strain, number of self-reported health conditions (SHCs), and disability pension level. Among modifiable parameters, the number of SHCs and disability pension level emerged as the most frequent partitioning variables, while education was most informative for participation in productive, leisure, and social activities. CONCLUSIONS: Long-term rehabilitation management and clinical practice should target people most prone to decreased participation in major life domains. Our study indicates that the alleviation of SHCs, engagement in further education, or adjusting disability pension level are promising areas to improve participation of persons living with SCI

    Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles.</p> <p>Results</p> <p>Our results show that hydroxyl radicals (<sup>.</sup>OH) were generated from reactions with H<sub>2</sub>O<sub>2 </sub>and after exposure to cells. Catalase reduced the generation of <b><sup>.</sup></b>OH from exposed cells indicating the involvement of H<sub>2</sub>O<sub>2</sub>. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O<sub>2 </sub>consumption, induce H<sub>2</sub>O<sub>2 </sub>generation in cells, and cause DNA damage.</p> <p>Conclusion</p> <p>Increase in oxidative damage observed in the cellular exposures correlated well with <b><sup>.</sup></b>OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size, and elapsed time after generation of the welding exposure are significant factors in radical generation and particle deposition these factors should be considered when developing protective strategies.</p

    Psychological response and quality of life after transplantation: a comparison between heart, lung, liver and kidney recipients

    Full text link
    PRINCIPLES: Various non-specific questionnaires were used to measure quality of life and psychological wellbeing of patients after organ transplantation. At present cross-organ studies dealing specifically with the psychological response to a transplanted organ are non-existent in German-speaking countries. METHODS: The Transplant Effects Questionnaire TxEQ-D and the SF-36 Quality of Life Questionnaire were used to examine the psychological response and quality of life of 370 patients after heart, lung, liver or kidney transplantation. The organ groups were compared with regard to psychosocial parameters. RESULTS: 72% of patients develop a feeling of responsibility for the received organ and its function. This feeling is even stronger towards the patient's key relationships i.e. family, friends, the treatment team and the donor. 11.6% worry about the transplanted organ. Heart and lung patients report significantly fewer concerns than liver and kidney patients. Overall, only a minority of patients report feelings of guilt towards the donor (2.7%), problems in disclosing their transplant to others (2.4%), or difficulties in complying with medical orders (3.5%). Lung transplant patients show significantly better adherence. CONCLUSIONS: A feeling of responsibility towards those one is close to and towards the donor is a common psychological phenomenon after transplantation of an organ. Conscious feelings of guilt and shame are harboured by only a minority of patients. The fact that heart and lung patients worry less about their transplant might have primarily to do with the greater medical and psychosocial support in this group

    Structure and evolution of super-Earth to super-Jupiter exoplanets: I. heavy element enrichment in the interior

    Get PDF
    We examine the uncertainties in current planetary models and we quantify their impact on the planet cooling histories and mass-radius relationships. These uncertainties include (i) the differences between the various equations of state used to characterize the heavy material thermodynamical properties, (ii) the distribution of heavy elements within planetary interiors, (iii) their chemical composition and (iv) their thermal contribution to the planet evolution. Our models, which include a gaseous H/He envelope, are compared with models of solid, gasless Earth-like planets in order to examine the impact of a gaseous envelope on the cooling and the resulting radius. We find that for a fraction of heavy material larger than 20% of the planet mass, the distribution of the heavy elements in the planet's interior affects substantially the evolution and thus the radius at a given age. For planets with large core mass fractions (\simgr 50%), such as the Neptune-mass transiting planet GJ436b, the contribution of the gravitational and thermal energy from the core to the planet cooling history is not negligible, yielding a \sim 10% effect on the radius after 1 Gyr. We show that the present mass and radius determinations of the massive planet Hat-P-2b require at least 200 \mearth of heavy material in the interior, at the edge of what is currently predicted by the core-accretion model for planet formation. We show that if planets as massive as \sim 25 \mjup can form, as predicted by improved core-accretion models, deuterium is able to burn in the H/He layers above the core, even for core masses as large as \sim 100 \mearth. We provide extensive grids of planetary evolution models from 10 \mearth to 10 MJup_{\rm Jup}, with various fractions of heavy elements.Comment: 20 pages, 12 figures. Accepted for publication in Astronomy and Astrophysic

    ABA triblock copolymers: from controlled synthesis to controlled function

    Get PDF
    The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated
    corecore