949 research outputs found
A first principles simulation of rigid water
We present the results of Car-Parrinello (CP) simulations of water at ambient
conditions and under pressure, using a rigid molecule approximation. Throughout
our calculations, water molecules were maintained at a fixed intramolecular
geometry corresponding to the average structure obtained in fully unconstrained
simulations. This allows us to use larger time steps than those adopted in
ordinary CP simulations of water, and thus to access longer time scales. In the
absence of chemical reactions or dissociation effects, these calculations open
the way to ab initio simulations of aqueous solutions that require timescales
substantially longer than presently feasible (e.g. simulations of hydrophobic
solvation). Our results show that structural properties and diffusion
coefficients obtained with a rigid model are in better agreement with
experiment than those determined with fully flexible simulations. Possible
reasons responsible for this improved agreement are discussed
Focal neuromyotonia: do I love you?
We present a rare case of focal neuromyotonia in a 73-year-old woman with a follow up of 5years. The clinical picture showed a fixed contraction of the 3rd and 4th finger of the left hand. Similar to other published cases, our patient suffered from COPD and was treated with beta-2-sympathomimetics. This clinical picture shows a rare but rather salient differential diagnosis of Dupuytren's contracture. EMG of the affected muscles may yield a diagnosis and prevent the patient from a long and ineffective treatment "odyssey
Mass-radius relationships for exoplanets
For planets other than Earth, interpretation of the composition and structure
depends largely on comparing the mass and radius with the composition expected
given their distance from the parent star. The composition implies a
mass-radius relation which relies heavily on equations of state calculated from
electronic structure theory and measured experimentally on Earth. We lay out a
method for deriving and testing equations of state, and deduce mass-radius and
mass-pressure relations for key materials whose equation of state is reasonably
well established, and for differentiated Fe/rock. We find that variations in
the equation of state, such as may arise when extrapolating from low pressure
data, can have significant effects on predicted mass- radius relations, and on
planetary pressure profiles. The relations are compared with the observed
masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth-
like,' likely with a proportionately larger core than Earth's, nominally 2/3 of
the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an
Fe-based core which is likely to be proportionately smaller than Earth's. GJ
1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy'
composition with a relatively large core or a relatively large proportion of
H2O. CoRoT-2b is less dense than the hydrogen relation, which could be
explained by an anomalously high degree of heating or by higher than assumed
atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation
for hydrogen, suggesting the presence of a significant amount of matter of
higher atomic number. CoRoT-3b lies close to the hydrogen relation. The
pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure
in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra
"rock" compositions. Responded to referee comment
Detecting subgroups in social participation among individuals living with spinal cord injury:a longitudinal analysis of community survey data
STUDY DESIGN: Longitudinal community survey. OBJECTIVES: To determine subgroups in social participation of individuals living with spinal cord injury (SCI). SETTING: Community. METHODS: Data were collected in 2012 and 2017 as part of the community survey of the Swiss Spinal Cord Injury cohort. Participation was assessed using the 33-item Utrecht Scale of Evaluation of Rehabilitation-Participation evaluating frequency of, restrictions in and satisfaction with productive, leisure, and social activities. Linear mixed-effects model trees were used to distinguish subgroups in participation associated with sociodemographic and lesion characteristics. RESULTS: In all, 3079 observations were used for the analysis, of which 1549 originated from Survey 2012, 1530 from Survey 2017, and 761 from both surveys. Participants were mostly male (2012: 71.5%; 2017: 71.2%), aged on average 50 years (2012: 52.3; 2017: 56.5), with an incomplete paraplegia (2012: 37.5%; 2017: 41.8%) of traumatic origin (2012: 84.7%; 2017: 79.3%). There was limited within-person variation in participation over the 5-year period. Participation varied with age, SCI severity, education, financial strain, number of self-reported health conditions (SHCs), and disability pension level. Among modifiable parameters, the number of SHCs and disability pension level emerged as the most frequent partitioning variables, while education was most informative for participation in productive, leisure, and social activities. CONCLUSIONS: Long-term rehabilitation management and clinical practice should target people most prone to decreased participation in major life domains. Our study indicates that the alleviation of SHCs, engagement in further education, or adjusting disability pension level are promising areas to improve participation of persons living with SCI
Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species
<p>Abstract</p> <p>Background</p> <p>Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles.</p> <p>Results</p> <p>Our results show that hydroxyl radicals (<sup>.</sup>OH) were generated from reactions with H<sub>2</sub>O<sub>2 </sub>and after exposure to cells. Catalase reduced the generation of <b><sup>.</sup></b>OH from exposed cells indicating the involvement of H<sub>2</sub>O<sub>2</sub>. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O<sub>2 </sub>consumption, induce H<sub>2</sub>O<sub>2 </sub>generation in cells, and cause DNA damage.</p> <p>Conclusion</p> <p>Increase in oxidative damage observed in the cellular exposures correlated well with <b><sup>.</sup></b>OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size, and elapsed time after generation of the welding exposure are significant factors in radical generation and particle deposition these factors should be considered when developing protective strategies.</p
Psychological response and quality of life after transplantation: a comparison between heart, lung, liver and kidney recipients
PRINCIPLES: Various non-specific questionnaires were used to measure quality of life and psychological wellbeing of patients after organ transplantation. At present cross-organ studies dealing specifically with the psychological response to a transplanted organ are non-existent in German-speaking countries. METHODS: The Transplant Effects Questionnaire TxEQ-D and the SF-36 Quality of Life Questionnaire were used to examine the psychological response and quality of life of 370 patients after heart, lung, liver or kidney transplantation. The organ groups were compared with regard to psychosocial parameters. RESULTS: 72% of patients develop a feeling of responsibility for the received organ and its function. This feeling is even stronger towards the patient's key relationships i.e. family, friends, the treatment team and the donor. 11.6% worry about the transplanted organ. Heart and lung patients report significantly fewer concerns than liver and kidney patients. Overall, only a minority of patients report feelings of guilt towards the donor (2.7%), problems in disclosing their transplant to others (2.4%), or difficulties in complying with medical orders (3.5%). Lung transplant patients show significantly better adherence. CONCLUSIONS: A feeling of responsibility towards those one is close to and towards the donor is a common psychological phenomenon after transplantation of an organ. Conscious feelings of guilt and shame are harboured by only a minority of patients. The fact that heart and lung patients worry less about their transplant might have primarily to do with the greater medical and psychosocial support in this group
Structure and evolution of super-Earth to super-Jupiter exoplanets: I. heavy element enrichment in the interior
We examine the uncertainties in current planetary models and we quantify
their impact on the planet cooling histories and mass-radius relationships.
These uncertainties include (i) the differences between the various equations
of state used to characterize the heavy material thermodynamical properties,
(ii) the distribution of heavy elements within planetary interiors, (iii) their
chemical composition and (iv) their thermal contribution to the planet
evolution. Our models, which include a gaseous H/He envelope, are compared with
models of solid, gasless Earth-like planets in order to examine the impact of a
gaseous envelope on the cooling and the resulting radius. We find that for a
fraction of heavy material larger than 20% of the planet mass, the distribution
of the heavy elements in the planet's interior affects substantially the
evolution and thus the radius at a given age. For planets with large core mass
fractions (\simgr 50%), such as the Neptune-mass transiting planet GJ436b,
the contribution of the gravitational and thermal energy from the core to the
planet cooling history is not negligible, yielding a 10% effect on the
radius after 1 Gyr. We show that the present mass and radius determinations of
the massive planet Hat-P-2b require at least 200 \mearth of heavy material in
the interior, at the edge of what is currently predicted by the core-accretion
model for planet formation. We show that if planets as massive as 25
\mjup can form, as predicted by improved core-accretion models, deuterium is
able to burn in the H/He layers above the core, even for core masses as large
as 100 \mearth. We provide extensive grids of planetary evolution
models from 10 \mearth to 10 M, with various fractions of heavy
elements.Comment: 20 pages, 12 figures. Accepted for publication in Astronomy and
Astrophysic
Recommended from our members
Local Effects in the X-ray Absorption Spectrum of CaCl2, MgCl2, and NaCl Solutions
Both first principles molecular dynamics and theoretical X-ray absorption spectroscopy have been used to investigate the aqueous solvation of cations in 0.5 M MgCl{sub 2}, CaCl{sub 2}, and NaCl solutions. We focus here on the species-specific effects that Mg{sup 2+}, Ca{sup 2+}, and Na{sup +}, have on the X-ray absorption spectrum of the respective solutions. For the divalent cations, we find that the hydrogen bonding characteristics of the more rigid magnesium first shell water molecules differ from those in the more flexible solvation shell surrounding calcium. In particular, the first solvation shell water molecules of calcium are accessible to forming acceptor hydrogen bonds, and this results in an enhancement of a post-edge peak near 540 eV. The absence of acceptor hydrogen bonds for magnesium first shell water molecules provides an explanation for the experimental and theoretical observation of a lack of enhancement at the post-main-edge peak. For the sodium monovalent cation we find that the broad tilt angle distribution results in a broadening of post-edge features, despite populations in donor-and-acceptor configurations consistent with calcium. We also present the re-averaged spectra of the MgCl{sub 2}, CaCl{sub 2}, and NaCl solutions and show that trends apparent with increasing concentration (0.5 M, 2.0 M, 4.0 M) are consistent with experiment. Finally, we examine more closely both the effect that cation coordination number has on the hydrogen bonding network and the relative perturbation strength of the cations on lone pair oxygen orbitals
Recommended from our members
Geometrical frustration in an element solid: (beta)-rhombohedral boron
Although a comprehensive understanding of the basic properties of most elemental solids has been achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the peculiar transport properties of boron that have been reported over the past forty years originate from the presence of geometrical frustration
ABA triblock copolymers: from controlled synthesis to controlled function
The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated
- …