127 research outputs found

    Particulate matter and risk of parkinson disease in a large prospective study of women

    Get PDF
    Background: Exposure to air pollution has been implicated in a number of adverse health outcomes and the effect of particulate matter (PM) on the brain is beginning to be recognized. Yet, no prospective study has examined the association between PM and risk of Parkinson Disease. Thus, our goal was assess if exposure to particulate matter air pollution is related to risk of Parkinson’s disease (PD) in the Nurses’ Health Study (NHS), a large prospective cohort of women. Methods: Cumulative average exposure to different size fractions of PM up to 2 years before the onset of PD, was estimated using a spatio-temporal model by linking each individual’s places of residence throughout the study with location-specific air pollution levels. We prospectively followed 115,767 women in the NHS, identified 508 incident PD cases and used multivariable Cox proportional hazards models to estimate the risk of PD associated with each size fraction of PM independently. Results: In models adjusted for age in months, smoking, region, population density, caffeine and ibuprofen intake, we observed no statistically significant associations between exposure to air pollution and PD risk. The relative risk (RR) comparing the top quartile to the bottom quartile of PM exposure was 0.99 (95% Confidence Intervals (CI): 0.84,1.16) for PM10 (≤10 microns in diameter), 1.08 (95% CI: 0.81, 1.45) for PM2.5 (≤2.5 microns in diameter), and 0.92 (95% CI: 0.71, 1.19) for PM10–2.5 (2.5 to 10 microns in diameter). Conclusions: In this study, we found no evidence that exposure to air pollution is a risk factor for PD

    A Prospective Analysis of Airborne Metal Exposures and Risk of Parkinson Disease in the Nurses’ Health Study Cohort

    Get PDF
    Background: Exposure to metals has been implicated in the pathogenesis of Parkinson disease (PD). Objectives: We sought to examine in a large prospective study of female nurses whether exposure to airborne metals was associated with risk of PD. Methods: We linked the U.S. Environmental Protection Agency (EPA)’s Air Toxics tract-level data with the Nurses’ Health Study, a prospective cohort of female nurses. Over the course of 18 years of follow-up from 1990 through 2008, we identified 425 incident cases of PD. We examined the association of risk of PD with the following metals that were part of the first U.S. EPA collections in 1990, 1996, and 1999: arsenic, antimony, cadmium, chromium, lead, manganese, mercury, and nickel. To estimate hazard ratios (HRs) and 95% CIs, we used the Cox proportional hazards model, adjusting for age, smoking, and population density. Results: In adjusted models, the HR for the highest compared with the lowest quartile of each metal ranged from 0.78 (95% CI: 0.59, 1.04) for chromium to 1.33 (95% CI: 0.98, 1.79) for mercury. Conclusions: Overall, we found limited evidence for the association between adulthood ambient exposure to metals and risk of PD. The results for mercury need to be confirmed in future studies. Citation: Palacios N, Fitzgerald K, Roberts AL, Hart JE, Weisskopf MG, Schwarzschild MA, Ascherio A, Laden F. 2014. A prospective analysis of airborne metal exposures and risk of Parkinson disease in the Nurses’ Health Study Cohort. Environ Health Perspect 122:933–938; http://dx.doi.org/10.1289/ehp.130721

    Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Get PDF
    Alpha-synuclein (αSyn) is encoded by the first causal gene identified in Parkinson's disease (PD) and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC) of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches

    Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization

    Get PDF
    In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711

    Key Modulatory Role of Presynaptic Adenosine A 2A

    Get PDF
    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders

    The Sirtuin-2 Inhibitor AK7 Is Neuroprotective in Models of Parkinson’s Disease but Not Amyotrophic Lateral Sclerosis and Cerebral Ischemia

    Get PDF
    Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson’s disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson’s disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson’s disease, and previously in Huntington’s disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases

    Biomarker-driven phenotyping in Parkinson's disease: A translational missing link in disease-modifying clinical trials

    Get PDF
    Past clinical trials of putative neuroprotective therapies have targeted PD as a single pathogenic disease entity. From an Oslerian clinicopathological perspective, the wide complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: A single-mechanism therapy can affect most of those sharing the classic pathological hallmark. From a systems-biology perspective, PD is a group of disorders that, while related by sharing the feature of nigral dopamine-neuron degeneration, exhibit unique genetic, biological, and molecular abnormalities, which probably respond differentially to a given therapeutic approach, particularly for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous subtypes of PD are likely to respond optimally to therapies proven to affect the biological processes within each subtype. Therefore, we suggest that precision medicine applied to PD requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on correlating biological measures to clinical features of PD and on identifying factors that predict whether various prodromal states will convert into the classical movement disorder. We suggest, instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., biomarkers), rather than clinical definitions, are used to define disease phenotypes. Successful development of disease-modifying strategies will depend on how relevant the specific biological processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of targeted patients. This precision-medicine approach will likely yield smaller, but well-defined, subsets of PD amenable to successful neuroprotection.Fil: Espay, Alberto J.. University of Cincinnati; Estados UnidosFil: Schwarzschild, Michael A.. Massachusetts General Hospital; Estados UnidosFil: Tanner, Caroline M.. University of California; Estados UnidosFil: Fernandez, Hubert H.. Cleveland Clinic; Estados UnidosFil: Simon, David K.. Harvard Medical School; Estados UnidosFil: Leverenz, James B.. Cleveland Clinic; Estados UnidosFil: Merola, Aristide. University of Cincinnati; Estados UnidosFil: Chen Plotkin, Alice. University of Pennsylvania; Estados UnidosFil: Brundin, Patrik. Van Andel Research Institute. Center for Neurodegenerative Science; Estados UnidosFil: Kauffman, Marcelo Andres. Universidad Austral; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Erro, Roberto. Universita di Verona; Italia. University College London; Reino UnidoFil: Kieburtz, Karl. University of Rochester Medical Center; Estados UnidosFil: Woo, Daniel. University of Cincinnati; Estados UnidosFil: Macklin, Eric A.. Massachusetts General Hospital; Estados UnidosFil: Standaert, David G.. University of Alabama at Birmingahm; Estados UnidosFil: Lang, Anthony E.. University of Toronto; Canad

    Genetic diversity of axon degenerative mechanisms in models of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist

    Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis

    Get PDF
    Objective: To identify prediagnostic plasma metabolomic biomarkers associated with amyotrophic lateral sclerosis (ALS). Methods: We conducted a global metabolomic study using a nested case-control study design within 5 prospective cohorts and identified 275 individuals who developed ALS during follow-up. We profiled plasma metabolites using liquid chromatography–mass spectrometry and identified 404 known metabolites. We used conditional logistic regression to evaluate the associations between metabolites and ALS risk. Further, we used machine learning analyses to determine whether the prediagnostic metabolomic profile could discriminate ALS cases from controls. Results: A total of 31 out of 404 identified metabolites were associated with ALS risk (p < 0.05). We observed inverse associations (n = 27) with plasma levels of diacylglycerides and triacylglycerides, urate, purine nucleosides, and some organic acids and derivatives, while we found positive associations for a cholesteryl ester, 2 phosphatidylcholines, and a sphingomyelin. The number of significant associations increased to 67 (63 inverse) in analyses restricted to cases with blood samples collected within 5 years of onset. None of these associations remained significant after multiple comparison adjustment. Further, we were not able to reliably distinguish individuals who became cases from controls based on their metabolomic profile using partial least squares discriminant analysis, elastic net regression, random forest, support vector machine, or weighted correlation network analyses. Conclusions: Although the metabolomic profile in blood samples collected years before ALS diagnosis did not reliably separate presymptomatic ALS cases from controls, our results suggest that ALS is preceded by a broad, but poorly defined, metabolic dysregulation years before the disease onset
    • …
    corecore