27 research outputs found

    Effect of water activity on rates of serpentinization of olivine

    Get PDF
    The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth’s surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H2O activity decreases

    Fluid‐mediated mass transfer between mafic and ultramafic rocks in subduction zones

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Codillo, E., Klein, F., Dragovic, B., Marschall, H., Baxter, E., Scambelluri, M., & Schwarzenbach‬, E. Fluid‐mediated mass transfer between mafic and ultramafic rocks in subduction zones. Geochemistry Geophysics Geosystems, 23, (2022): e2021GC010206, https://doi.org/10.1029/2021gc010206.Metasomatic reaction zones between mafic and ultramafic rocks exhumed from subduction zones provide a window into mass-transfer processes at high pressure. However, accurate interpretation of the rock record requires distinguishing high-pressure metasomatic processes from inherited oceanic signatures prior to subduction. We integrated constraints from bulk-rock geochemical compositions and petrophysical properties, mineral chemistry, and thermodynamic modeling to understand the formation of reaction zones between juxtaposed metagabbro and serpentinite as exemplified by the Voltri Massif (Ligurian Alps, Italy). Distinct zones of variably metasomatized metagabbro are dominated by chlorite, amphibole, clinopyroxene, epidote, rutile, ilmenite, and titanite between serpentinite and eclogitic metagabbro. Whereas the precursor serpentinite and oxide gabbro formed and were likely already in contact in an oceanic setting, the reaction zones formed by diffusional Mg-metasomatism between the two rocks from prograde to peak, to retrograde conditions in a subduction zone. Metasomatism of mafic rocks by Mg-rich fluids that previously equilibrated with serpentinite could be widespread along the subduction interface, within the subducted slab, and the mantle wedge. Furthermore, the models predict that talc formation by Si-metasomatism of serpentinite in subduction zones is limited by pressure-dependent increase in the silica activity buffered by the serpentine-talc equilibrium. Elevated activities of aqueous Ca and Al species would also favor the formation of chlorite and garnet. Accordingly, unusual conditions or processes would be required to stabilize abundant talc at high P-T conditions. Alternatively, a different set of mineral assemblages, such as serpentine- or chlorite-rich rocks, may be controlling the coupling-decoupling transition of the plate interface.M. Scambelluri acknowledges the Italian Ministry of Research MUR for granting the PRIN project n. 2017ZE49E7. This research was funded by NSF-OISE (Office of International Science & Engineering, Petrology & Geochemistry) PIRE, Award #1545903, and the WHOI Ocean Ventures Fund

    Sulphur and carbon cycling in the subduction zone mélange

    Get PDF
    Subduction zones impose an important control on the geochemical cycling between the surficial and internal reservoirs of the Earth. Sulphur and carbon are transferred into Earth’s mantle by subduction of pelagic sediments and altered oceanic lithosphere. Release of oxidizing sulphate- and carbonate-bearing fluids modifies the redox state of the mantle and the chemical budget of subduction zones. Yet, the mechanisms of sulphur and carbon cycling within subduction zones are still unclear, in part because data are typically derived from arc volcanoes where fluid compositions are modified during transport through the mantle wedge. We determined the bulk rock elemental, and sulphur and carbon isotope compositions of exhumed ultramafic and metabasic rocks from Syros, Greece. Comparison of isotopic data with major and trace element compositions indicates seawater alteration and chemical exchange with sediment-derived fluids within the subduction zone channel. We show that small bodies of detached slab material are subject to metasomatic processes during exhumation, in contrast to large sequences of obducted ophiolitic sections that retain their seafloor alteration signatures. In particular, fluids circulating along the plate interface can cause sulphur mobilization during several stages of exhumation within high-pressure rocks. This takes place more pervasively in serpentinites compared to mafic rocks

    Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks

    Get PDF
    Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H2, CH4 and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation

    Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective

    Get PDF
    Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and ÎŽ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have ÎŽ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net ÎŽ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver 34S-enriched sulfur to produce the positive ÎŽ34S signature in arc settings. Most sulfur has negative ÎŽ34S and is subducted into the deep mantle, which could cause a long-term increase in the ÎŽ34S of Earth surface reservoirs

    Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 423 (2016): 19-33, doi:10.1016/j.chemgeo.2016.01.003.Chromium (Cr) isotopes are an emerging proxy for redox processes at Earth’s surface. However, many geological reservoirs and isotope fractionation processes are still not well understood. The purpose of this contribution is to move forward our understanding of (1) Earth’s high temperature Cr isotope inventory and (2) Cr isotope fractionations during subduction-related metamorphism, black shale weathering and hydrothermal alteration. The examined basalts and their metamorphosed equivalents yielded ÎŽ53Cr values falling within a narrow range of -0.12±0.13‰ (2SD, n=30), consistent with the previously reported range for the bulk silicate Earth (BSE). Compilations of currently available data for fresh silicate rocks (43 samples), metamorphosed silicate rocks (50 samples), and mantle chromites (39 samples) give ÎŽ53Cr values of -0.13±0.13‰, -0.11±0.13‰, and -0.07±0.13‰, respectively. Although the number of high-temperature samples analyzed has tripled, the originally proposed BSE range appears robust. This suggests very limited Cr isotope fractionation under high temperature conditions. Additionally, in a highly altered metacarbonate transect that is representative of fluid-rich regional metamorphism, we did not find resolvable variations in ÎŽ53Cr, despite significant loss of Cr. This work suggests that primary Cr isotope signatures may be preserved even in instances of intense metamorphic alteration at relatively high fluid-rock ratios. Oxidative weathering of black shale at low pH creates isotopically heavy mobile Cr(VI). However, a significant proportion of the Cr(VI) is apparently immobilized near the weathering surface, leading to local enrichment of isotopically heavy Cr (ÎŽ53Cr values up to ~0.5‰). The observed large Cr isotope variation in the black shale weathering profile provides indirect evidence for active manganese oxide formation, which is primarily controlled by microbial activity. Lastly, we found widely variable ÎŽ53Cr (-0.2‰ to 0.6‰) values in highly serpentinized peridotites from ocean drilling program drill cores and outcropping ophiolite sequences. The isotopically heavy serpentinites are most easily explained through a multi-stage alteration processes: Cr loss from the host rock under oxidizing conditions, followed by Cr enrichment under sulfate reducing conditions. In contrast, Cr isotope variability is limited in mildly altered mafic oceanic crust.Funding for this research was provided by Agouron Institute to XLW, National Science Foundation (NSF) EAR-0105927 and EAR-1250269 to JJA, and NSF EAR-1324566 to ES. NJP and CTR acknowledge funding from the Alternative Earths NAI.2017-01-1

    Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357)

    Get PDF
    IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life

    Sulfide Mineralogy as a Tracer for Fluid-Rock Interaction in Serpentinites

    No full text
    Fluid-rock interaction in ultramafic rocks leads to considerable changes in the fluid redox conditions and the formation of highly reducing conditions. In this regard, serpentinization systems are some of the most reducing environments found on Earth allowing for the stabilization of native metals and metal alloys and thus affecting the petrophysical properties of the oceanic lithosphere. At the Chimaera hydrothermal field in Turkey highly methaneenriched fluids issue from an ultramafic basement that is undergoing continental serpentinization, though partial serpentinization already took place during mantle exposure along an oceanic spreading center. Here, we study the sulfur geochemistry and mineralogy of selected, highly serpentinized peridotites to track sulfur sources, mobilization mechanisms of sulfur and the evolution of the redox conditions during hydrothermal alteration of these rocks – from high-temperature oceanic to low temperature continental serpentinization. Sulfur isotope compositions document seafloor alteration with introduction of Cretaceous seawater and a mostly magmatic origin of the sulfide that mainly includes pentlandite. However, sulfide and metal mineral assemblages also document fluid-rock interaction processes; awaruite and native Cu reflect highly reducing fluid conditions whereas hematite and magnetite reflect oxidizing conditions suggesting secondary formation or alteration of primary formed pentlandite during fluid-rock interaction. Sulfide minerals show distinct decomposition features with formation of native metals (mostly native Cu) providing evidence for disequilibrium conditions. Furthermore, we find strong redox gradients on the micrometer scale indicating that late stage fluid infiltration – most likely during continental serpentinization and associated with highly reducing fluids – overprinted earlier sulfide and metal mineral assemblages from oceanic serpentinization. These observations provide evidence that redox conditions strongly vary during the evolution of peridotite-hosted hydrothermal systems

    Sulfide Mineralogy as a Tracer for Fluid-Rock Interaction in Serpentinites

    No full text
    Fluid-rock interaction in ultramafic rocks leads to considerable changes in the fluid redox conditions and the formation of highly reducing conditions. In this regard, serpentinization systems are some of the most reducing environments found on Earth allowing for the stabilization of native metals and metal alloys and thus affecting the petrophysical properties of the oceanic lithosphere. At the Chimaera hydrothermal field in Turkey highly methaneenriched fluids issue from an ultramafic basement that is undergoing continental serpentinization, though partial serpentinization already took place during mantle exposure along an oceanic spreading center. Here, we study the sulfur geochemistry and mineralogy of selected, highly serpentinized peridotites to track sulfur sources, mobilization mechanisms of sulfur and the evolution of the redox conditions during hydrothermal alteration of these rocks – from high-temperature oceanic to low temperature continental serpentinization. Sulfur isotope compositions document seafloor alteration with introduction of Cretaceous seawater and a mostly magmatic origin of the sulfide that mainly includes pentlandite. However, sulfide and metal mineral assemblages also document fluid-rock interaction processes; awaruite and native Cu reflect highly reducing fluid conditions whereas hematite and magnetite reflect oxidizing conditions suggesting secondary formation or alteration of primary formed pentlandite during fluid-rock interaction. Sulfide minerals show distinct decomposition features with formation of native metals (mostly native Cu) providing evidence for disequilibrium conditions. Furthermore, we find strong redox gradients on the micrometer scale indicating that late stage fluid infiltration – most likely during continental serpentinization and associated with highly reducing fluids – overprinted earlier sulfide and metal mineral assemblages from oceanic serpentinization. These observations provide evidence that redox conditions strongly vary during the evolution of peridotite-hosted hydrothermal systems
    corecore