678 research outputs found
Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides with experiment and theory
Chalcogen vacancies are considered to be the most abundant point defects in
two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and
predicted to result in deep in-gap states (IGS). As a result, important
features in the optical response of 2D-TMDs have typically been attributed to
chalcogen vacancies, with indirect support from Transmission Electron
Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM
imaging measurements do not provide direct access to the electronic structure
of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a
direct probe of local electronic structure, the interpretation of the chemical
nature of atomically-resolved STM images of point defects in 2D-TMDs can be
ambiguous. As a result, the assignment of point defects as vacancies or
substitutional atoms of different kinds in 2D-TMDs, and their influence on
their electronic properties, has been inconsistent and lacks consensus. Here,
we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS,
and state-of-the-art ab initio density functional theory (DFT) and GW
calculations to determine both the structure and electronic properties of the
most abundant individual chalcogen-site defects common to 2D-TMDs.
Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our
results and analysis strongly suggest that the common chalcogen defects in our
2D-TMDs, prepared and measured in standard environments, are substitutional
oxygen rather than vacancies
PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity
T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency “Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses
Phase 2 Study of Pemetrexed Plus Carboplatin, or Pemetrexed Plus Cisplatin with Concurrent Radiation Therapy Followed by Pemetrexed Consolidation in Patients with Favorable-Prognosis Inoperable Stage IIIA/B Non–Small-Cell Lung Cancer
IntroductionThere is no consensus chemotherapy regimen with concurrent radiotherapy (RT) for inoperable stage IIIA/B non–small-cell lung cancer. This trial evaluated pemetrexed with carboplatin (PCb) or cisplatin (PC) with concurrent RT followed by consolidation pemetrexed.MethodsIn this open-label, noncomparative phase II trial, patients with inoperable stage IIIA/B non–small-cell lung cancer (initially all histologies, later restricted to nonsquamous) were randomized (1:1) to PCb or PC with concurrent RT (64–68 Gy over days 1–45). Consolidation pemetrexed monotherapy was administered every 21 days for three cycles. Primary endpoint was 2-year overall survival (OS) rate.ResultsFrom June 2007 to November 2009, 98 patients were enrolled (PCb: 46; PC: 52). The 2-year OS rate was PCb: 45.4% (95% confidence interval [CI], 29.5–60.0%); PC: 58.4% (95% CI, 42.6–71.3%), and in nonsquamous patients was PCb: 48.0% (95% CI, 29.0–64.8%); PC: 55.8% (95% CI, 38.0–70.3%). Median time to disease progression was PCb: 8.8 months (95% CI, 6.0–12.6 months); PC: 13.1 months (95% CI, 8.3–not evaluable [NE]). Median OS (months) was PCb: 18.7 (95% CI, 12.9–NE); PC: 27.0 (95% CI, 23.2–NE). The objective response rates (ORRs) were PCb: 52.2%; PC: 46.2%. Grade 4 treatment-related toxicities (% PCb/% PC) were: anemia, 0/1.9; neutropenia, 6.5/3.8; thrombocytopenia, 4.3/1.9; and esophagitis, 0/1.9. Most patients completed scheduled chemotherapy and RT during induction and consolidation phases. No drug-related deaths were reported during chemoradiotherapy.ConclusionsBecause of study design, efficacy comparisons cannot be made. However, both combinations with concurrent RT were active and well tolerated
Correction: Does molecular profiling of tumors using the Caris molecular intelligence platform improve outcomes for cancer patients?
Corrections for article DOI: 10.18632/oncotarget.2425
Global analyses of human immune variation reveal baseline predictors of postvaccination responses.
A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention
The determinants of election to the United Nations Security Council
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11127-013-0096-4.The United Nations Security Council (UNSC) is the foremost international body responsible for the maintenance of international peace and security. Members vote on issues of global importance and consequently receive perks—election to the UNSC predicts, for instance, World Bank and IMF loans. But who gets elected to the UNSC? Addressing this question empirically is not straightforward as it requires a model that allows for discrete choices at the regional and international levels; the former nominates candidates while the latter ratifies them. Using an original multiple discrete choice model to analyze a dataset of 180 elections from 1970 to 2005, we find that UNSC election appears to derive from a compromise between the demands of populous countries to win election more frequently and a norm of giving each country its turn. We also find evidence that richer countries from the developing world win election more often, while involvement in warfare lowers election probability. By contrast, development aid does not predict election
A dose-finding and safety study of novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia in patients receiving multicycle chemotherapy
Darbepoetin alfa is a novel erythropoiesis stimulating protein (NESP), which stimulates erythropoiesis by the same mechanism as recombinant human erythropoietin (rHuEPO). NESP has been shown to be safe and efficacious in patients with chronic renal failure. NESP is biochemically distinct from rHuEPO, due to its increased sialic acid content. NESP has an approximately 3-fold greater half-life. rHuEPO has been shown to be safe and effective for the treatment of chemotherapy-induced anaemia. This study assessed the safety and efficacy of NESP administered once per week, under the supervision of a physician, to patients with solid tumours who were receiving multicycle chemotherapy for up to 12 weeks. Three dose cohorts are presented in this sequential, unblinded and dose-escalating study. Thirteen to 59 patients received NESP (0.5, 1.5 or 2.25 mcg kg−1wk−1) in each cohort. Patients were monitored for adverse events, including antibody formation to NESP and for effects on haemoglobin. NESP appeared to be well tolerated. Adverse events were similar across all cohorts and were consistent with the population being studied. No antibody formation was detected over the 16-week study period and follow-up. A dose–response relationship was evident for NESP and multiple measures of efficacy, including proportion of patients responding to NESP and the mean change in haemoglobin by week 4 and end of treatment for NESP 0.5, 1.5 and 2.25 mcg kg−1wk−1cohorts (mean change in haemoglobin at end of treatment was 1.24, 1.73 and 2.15 g dl−1respectively). Controlled studies of this agent at higher doses and less frequent schedules of administration are ongoing. © 2001 Cance Cancer Research Campaig
Do Aphid Colonies Amplify their Emission of Alarm Pheromone?
When aphids are attacked by natural enemies, they emit alarm pheromone to alert conspecifics. For most aphids tested, (E)-β-farnesene (EBF) is the main, or only, constituent of the alarm pheromone. In response to alarm pheromone, alerted aphids drop off the plant, walk away, or attempt to elude predators. However, under natural conditions, EBF concentration might be low due to the low amounts emitted, to rapid air movement, or to oxidative degradation. To ensure that conspecifics are warned, aphids might conceivably amplify the alarm signal by emitting EBF in response to EBF emitted by other aphids. To examine whether such amplification occurs, we synthesized deuterated EBF (DEBF), which allowed us to differentiate between applied and aphid-derived chemical. Colonies of Acyrthosiphon pisum were treated with DEBF, and headspace volatiles were collected and analyzed for evidence of aphid-derived EBF. No aphid-derived EBF was detected, suggesting that amplification of the alarm signal does not occur. We discuss the disadvantages of alarm signal reinforcement
How Substitutional Point Defects in Two-Dimensional WS Induce Charge Localization, Spin-Orbit Splitting, and Strain
Control of impurity concentrations in semiconducting materials is essential
to device technology. Because of their intrinsic confinement, the properties of
two-dimensional semiconductors such as transition metal dichalcogenides (TMDs)
are more sensitive to defects than traditional bulk materials. The
technological adoption of TMDs is dependent on the mitigation of deleterious
defects and guided incorporation of functional foreign atoms. The first step
towards impurity control is the identification of defects and assessment of
their electronic properties. Here, we present a comprehensive study of point
defects in monolayer tungsten disulfide (WS) grown by chemical vapor
deposition (CVD) using scanning tunneling microscopy/spectroscopy, CO-tip
noncontact atomic force microscopy, Kelvin probe force spectroscopy, density
functional theory, and tight-binding calculations. We observe four different
substitutional defects: chromium (Cr) and molybdenum
(Mo) at a tungsten site, oxygen at sulfur sites in both bottom and
top layers (O top/bottom), as well as two negatively charged
defects (CDs). Their electronic fingerprints unambiguously corroborate the
defect assignment and reveal the presence or absence of in-gap defect states.
The important role of charge localization, spin-orbit coupling, and strain for
the formation of deep defect states observed at substitutional defects in
WS as reported here will guide future efforts of targeted defect
engineering and doping of TMDs
- …