714 research outputs found

    Efficiency of Single Nucleotide Polymorphisms to improve a genetic map of complex pedigree grapevines

    Get PDF
    A set of 47 SNP (single nucleotide polymorphisms) markers (Cabezas et al. 2011) was tested for their usefulness to improve a genetic map from the cross of GF.GA‑52-42 x 'Solaris' previously established with SSR markers (Schwander et al. 2012). 55.3 % of the SNPs showed informative segregation and 26 SNP markers were localized on 16 of the 19 linkage groups of grapevine. Five chromosome regions with large gaps of recombining SSR markers could be equipped by positioning a SNP marker there. One SNP marker, VV10992, was found linked to the major resistance locus Rpv10 and should be applicable for marker-assisted selection

    Toward a radiometric ice clock: uranium ages of the Dome C ice core

    Get PDF
    Ice sheets and deep ice cores have yielded a wealth of paleoclimate information based on continuous dating methods while independent radiometric ages of ice have remained elusive. Here we demonstrate the application of (234U/238U) measurements to dating the EPICA Dome C ice core based on the accumulation of 234U in the ice matrix from recoil during 238U decay out of dust bound within the ice. Measured (234U/238U) activity ratios within the ice generally increase with depth while the surface areas of the dust grains are relatively constant. Using a newly designed device for measuring surface area for small samples, we were able to estimate reliably the recoil efficiency of nuclides from dust to ice. The resulting calculated radiometric ages range between 80 ka and 870 ka. Measured samples in the upper 3100 m fall on the previously published age-depth profile. Samples in the 3200–3255 m section show a marked change from 723–870 ka to 85 ka indicating homogenization of the deep ice prior to resetting of the (234U/238U) age in the basal layers. The mechanism for homogenization is likely enhanced lateral ice flow due to high basal melting and geothermal heat flux

    X chromosomes show relaxed selection and complete somatic dosage compensation across Timema stick insect species

    Get PDF
    Sex chromosomes have evolved repeatedly across the tree of life. As they are present in different copy numbers in males and females, they are expected to experience different selection pressures than the autosomes, with consequences including a faster rate of evolution, increased accumulation of sexually antagonistic alleles and the evolution of dosage compensation. Whether these consequences are general or linked to idiosyncrasies of specific taxa is not clear as relatively few taxa have been studied thus far. Here, we use whole-genome sequencing to identify and characterize the evolution of the X chromosome in five species of Timema stick insects with XX:X0 sex determination. The X chromosome had a similar size (approximately 12% of the genome) and gene content across all five species, suggesting that the X chromosome originated prior to the diversification of the genus. Genes on the X showed evidence of relaxed selection (elevated dN/dS) and a slower evolutionary rate (dN + dS) than genes on the autosomes, likely due to sex-biased mutation rates. Genes on the X also showed almost complete dosage compensation in somatic tissues (heads and legs), but dosage compensation was absent in the reproductive tracts. Contrary to prediction, sex-biased genes showed little enrichment on the X, suggesting that the advantage X-linkage provides to the accumulation of sexually antagonistic alleles is weak. Overall, we found the consequences of X-linkage on gene sequences and expression to be similar across Timema species, showing the characteristics of the X chromosome are surprisingly consistent over 30 million years of evolution

    Expression of Insulinlike Growth Factor (IGF) and IGF-Binding Protein Genes in Human Lung Tumor Cell Lines

    Get PDF
    Background: The presence of multiple, low-molecular-weight, insulinlike growth factor (IGF)-binding proteins in lung tumor cell-conditioned medium and lung cancer patient serum has been recently reported. Purpose: To begin to elucidate the genetic basis for these observations, the present study examines the expression by lung tumor cell lines of three IGF-binding protein genes, namely, IGFBP-1, IGFBP-2, and IGFBP-3. Since IGF-binding proteins are thought to modulate the biologic action of the IGFs, the relationship between the expression of IGF-binding protein genes and the genes encoding IGF-I and IGF-II also has been investigated. Methods: Gene expression was studied in four small-cell lung cancer (SCLC) and three non—small-cell lung cancer (NSCLC) cell lines using Northern blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR) for IGFBP-1. Results: IGFBP-1 gene expression was detected by Northern blot analysis in one NSCLC cell line only. However, RT-PCR revealed that the IGFBP-1 gene was expressed in all four SCLC cell lines and in two of the three NSCLC lines. Northern blot analysis of IGFBP-2 gene expression demonstrated that all lung tumor cell lines expressed this gene. A low level of IGFBP-3 gene expression was detected in one SCLC cell line and in all three NSCLC cell lines. All lung tumor cell lines expressed the IGF-II gene as determined by Northern blot analysis. In marked contrast, none of the lines showed evidence of IGF-I gene expression using this method. However, RT-PCR revealed a low level of IGF-I gene expression in one SCLC and one NSCLC cell line only. Conclusions: These observations indicate 1) that IGF-binding proteins secreted by lung tumors are encoded by at least three different genes; 2) that there may be a close association between IGF-II and IGFBP-2 gene expression, such that, where there is production of IGF-II, IGFBP-2 is the principal BP; and 3) that the IGF-II gene is more widely expressed than the IGF-I gene in human lung tumor cell lines. [J Natl Cancer Institute 84: 628-634, 1992

    Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Get PDF
    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system

    First-Digit Law in Nonextensive Statistics

    Full text link
    Nonextensive statistics, characterized by a nonextensive parameter qq, is a promising and practically useful generalization of the Boltzmann statistics to describe power-law behaviors from physical and social observations. We here explore the unevenness of the first digit distribution of nonextensive statistics analytically and numerically. We find that the first-digit distribution follows Benford's law and fluctuates slightly in a periodical manner with respect to the logarithm of the temperature. The fluctuation decreases when qq increases, and the result converges to Benford's law exactly as qq approaches 2. The relevant regularities between nonextensive statistics and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.

    Power-gated MOS current mode logic (PG-MCML): a power aware DPA-resistant standard cell library

    Get PDF
    MOS Current Mode Logic (MCML) is one of the most promising logic style to counteract power analysis attacks. Unfortunately, the static power consumption of MCML standard cells is significantly higher compared to equivalent functions implemented using static CMOS logic. As a result, the use of such a logic style is very limited in portable devices. Paradoxically, these devices are the most sensitive to physical attacks, thus the ones which would benefit more from the adoption of MCML

    Modulation of human macrophage responses to mycobacterium tuberculosis by silver nanoparticles of different size and surface modification

    No full text
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications

    To what extent can headteachers be held to account in the practice of social justice leadership?

    Get PDF
    Internationally, leadership for social justice is gaining prominence as a global travelling theme. This article draws from the Scottish contribution to the International School Leadership Development Network (ISLDN) social justice strand and presents a case study of a relatively small education system similar in size to that of New Zealand, to explore one system's policy expectations and the practice realities of headteachers (principals) seeking to address issues around social justice. Scottish policy rhetoric places responsibility with headteachers to ensure socially just practices within their schools. However, those headteachers are working in schools located within unjust local, national and international contexts. The article explores briefly the emerging theoretical analyses of social justice and leadership. It then identifies the policy expectations, including those within the revised professional standards for headteachers in Scotland. The main focus is on the headteachers' perspectives of factors that help and hinder their practice of leadership for social justice. Macro systems-level data is used to contextualize equity and outcomes issues that headteachers are working to address. In the analysis of the dislocation between policy and reality, the article asks, 'to what extent can headteachers be held to account in the practice of social justice leadership?

    Variability in bioreactivity linked to changes in size and zeta potential of diesel exhaust particles in human immune cells

    Get PDF
    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO(2)) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO(2) (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1β, TNF-α, IL-6, IFN-γ, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (−37 to −41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties
    corecore